【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 (ab0)的離心率為,長(zhǎng)軸長(zhǎng)為4.過橢圓的左頂點(diǎn)A作直線l,分別交橢圓和圓x2y2a2于相異兩點(diǎn)PQ.

(1)若直線l的斜率為,求的值;

(2),求實(shí)數(shù)λ的取值范圍.

【答案】1 20λ1.

【解析】試題分析:

首先求得橢圓方程為,圓的方程為.

(1)法一:直線方程為,與橢圓方程聯(lián)立可得,則,結(jié)合圓的性質(zhì)可得,.

法二:聯(lián)立直線方程與橢圓方程可得: ,則.

(2)由題意可得,設(shè)直線lyk(x2),與橢圓方程聯(lián)立可得,據(jù)此可得: ,同理可得,則.

試題解析:

由題意得解得

所以橢圓的方程為1,圓的方程為x2y24.

(1)法一 直線l的方程為y (x2),

3x34x40.

解得xA=-2,xP,所以P.

所以AP.

又因?yàn)樵c(diǎn)O到直線l的距離d

所以AQ2,所以.

法二 由3y24y0,所以yP.

5y28y0,所以yQ.

所以×.

(2)λ,則λ1

設(shè)直線lyk(x2),

(2k21)x28k2x8k240

(x2)[(2k21)x(4k22)]0

所以xA=-2,xP,得P.

所以AP2,

AP.同理可得AQ.

所以λ11.

由題意知k20,所以0λ1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,PA垂直于所在的平面,C是圓周上不同于AB的一動(dòng)點(diǎn).

1)證明:是直角三角形;

2)若,且當(dāng)直線與平面所成角的正切值為時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了場(chǎng)比賽,他們所有比賽得分的情況如下:

甲:;

乙: .

(1)求甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù).

(2)分別求甲、乙兩名運(yùn)動(dòng)員得分的平均數(shù)、方差,你認(rèn)為哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)進(jìn)行自主招生時(shí),需要進(jìn)行邏輯思維和閱讀表達(dá)兩項(xiàng)能力的測(cè)試.學(xué)校對(duì)參加測(cè)試的200名學(xué)生的邏輯思維成績(jī)、閱讀表達(dá)成績(jī)以及這兩項(xiàng)的總成績(jī)進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:

得出下面四個(gè)結(jié)論:

甲同學(xué)的邏輯排名比乙同學(xué)的邏輯排名更靠前

②乙同學(xué)的邏輯思維成績(jī)排名比他的閱讀表達(dá)成績(jī)排名更靠前

③甲、乙、丙三位同學(xué)的邏輯思維成績(jī)排名中,甲同學(xué)更靠前

④甲同學(xué)的閱讀表達(dá)成績(jī)排名比他的邏輯思維成績(jī)排名更靠前

則所有正確結(jié)論的序號(hào)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,中心在原點(diǎn)的橢圓C的上焦點(diǎn)為,離心率等于

求橢圓C的方程;

設(shè)過且不垂直于坐標(biāo)軸的動(dòng)直線l交橢圓CA、B兩點(diǎn),問:線段OF上是否存在一點(diǎn)D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí), 恒成立,求的范圍;

(2)若處的切線為,求的值.并證明當(dāng))時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.

1)設(shè)甲同學(xué)上學(xué)期間的三天中之前到校的天數(shù)為,求,,時(shí)的概率,,,

2)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在之前到校的天數(shù)比乙同學(xué)在之前到校的天數(shù)恰好多”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量

(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次,第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率;

(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案