【題目】已知函數(shù),。

Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

Ⅱ.當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

Ⅲ.將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱(chēng),求的最小值。

【答案】(1)遞增區(qū)間為;(2);(3).

【解析】

(I)由條件利用余弦函數(shù)的周期性、單調(diào)性得出結(jié)論.
)根據(jù)余弦函數(shù)的圖象,數(shù)形結(jié)合可得k的范圍.
)由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的奇偶性,求得m的最小正值.

解:(1)因?yàn)?/span>,所以函數(shù)的最小正周期為,

,得,故函數(shù)的遞增區(qū)間為;

(Ⅱ)因?yàn)?/span>在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù)

,,

當(dāng)時(shí)方程恰有兩個(gè)不同實(shí)根.

(Ⅲ)

由題意得,,

當(dāng)時(shí),,此時(shí)關(guān)于原點(diǎn)中心對(duì)稱(chēng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)工會(huì)利用“健步行”開(kāi)展明年健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,九組,整理得到如下頻率分布直方圖:

1)從當(dāng)天步數(shù)在,,的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于220分的概率;

2)求該組數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐中,平面.,.點(diǎn)的交點(diǎn),點(diǎn)在線段上且.

(1)證明:平面;

(2)求直線與平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1)若函數(shù)上單調(diào)遞增,求a的取值范圍;

2)用反證法證明:函數(shù)不可能為上的單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)學(xué)中,經(jīng)常用環(huán)比、同比來(lái)進(jìn)行數(shù)據(jù)比較,環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期比較,如月與月相比,同比是指本期數(shù)據(jù)與歷史同時(shí)期比較,如月與月相比.

環(huán)比增長(zhǎng)率(本期數(shù)上期數(shù))上期數(shù),

同比增長(zhǎng)率(本期數(shù)同期數(shù))同期數(shù).

下表是某地區(qū)近個(gè)月來(lái)的消費(fèi)者信心指數(shù)的統(tǒng)計(jì)數(shù)據(jù):

序號(hào)

時(shí)間

消費(fèi)者信心指數(shù)

2017

求該地區(qū)月消費(fèi)者信心指數(shù)的同比增長(zhǎng)率(百分比形式下保留整數(shù));

月以外,該地區(qū)消費(fèi)者信心指數(shù)月環(huán)比增長(zhǎng)率為負(fù)數(shù)的有幾個(gè)月?

由以上數(shù)據(jù)可判斷,序號(hào)與該地區(qū)消費(fèi)者信心指數(shù)具有線性相關(guān)關(guān)系,寫(xiě)出關(guān)于的線性回歸方程,保留位小數(shù)),并依此預(yù)測(cè)該地區(qū)月的消費(fèi)者信心指數(shù)(結(jié)果保留位小數(shù),參考數(shù)據(jù)與公式:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yabcos(b0)的最大值為,最小值為-.

(1)求a,b的值;

(2)求函數(shù)g(x)=-4asin的最小值并求出對(duì)應(yīng)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.現(xiàn)以邊AC的中點(diǎn)D為坐標(biāo)原點(diǎn),平面ABC內(nèi)垂直于AC的直線為軸,直線AC軸,直線DA1軸建立空間直角坐標(biāo)系,解決以下問(wèn)題:

(1)求異面直線ABA1C所成角的余弦值;

(2)求直線AB與平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)

(1)求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過(guò)0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

附:,其中.

臨界值表

0.10

0.05

0.025

2.706

3.841

5.024

2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案