已知a,b,c是三條不同的直線,α,β,γ是三個不同的平面,上述命題中真命題的是( 。
A、若a⊥c,b⊥c,則a∥b或a⊥b
B、若α⊥β,β⊥γ,則α∥β
C、若a?α,b?β,c?β,a⊥b,a⊥c,則α⊥β;
D、若a⊥α,b?β,a∥b,則α⊥β
考點(diǎn):命題的真假判斷與應(yīng)用,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系,平面與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離,簡易邏輯
分析:本題考查空間中直線與平面,平面與平面的位置關(guān)系,A選項可用線線平行的條件進(jìn)行判斷;B選項由面面垂直判斷面面平行;C選項用線面平行的關(guān)系判斷線線平行;D選項由面面平行判斷面面平行.判斷結(jié)論的正確性,得出正確選項.
解答: 解:對于A,若a⊥c,b⊥c,在空間中垂直于同一條直線的兩條直線的位置關(guān)系是平行,相交或者異面;若a⊥c,b⊥c,則a∥b或a⊥b,故A不正確;
對于B,若α⊥β,β⊥γ,因為垂直于同一平面的兩個平面的位置關(guān)系是相交或平行;若α⊥β,β⊥γ,則α∥β,故B不正確;
對于C,若a?α,b?β,c?β,a⊥b,a⊥c,平行于同一平面的兩條直線可能相交,平行或異面;若a?α,b?β,c?β,a⊥b,a⊥c,則α⊥β,故C不正確;
對于D,若a⊥α,b?β,a∥b,因為平行于同一平面的兩個平面一定是平行關(guān)系.
若a⊥α,b?β,a∥b,則α⊥β,D選項正確,
故選:D.
點(diǎn)評:本題考查空間中直線與平面之間的位置關(guān)系,解題的關(guān)鍵是對空間中的線與線、線與面,面與面的位置關(guān)系有著較強(qiáng)的空間感知能力,能運(yùn)用相關(guān)的定理與條件對線面位置關(guān)系作出準(zhǔn)確判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}(n∈N*)中,其前n項和為Sn,滿足2Sn=n-n2
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=n•2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-2x
,當(dāng)x>1時,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,則整數(shù)k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個容量為40的樣本,分成若干組,在它的頻率分布直方圖中,某一組相應(yīng)的小長方形的面積為0.4,則該組的頻數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點(diǎn),其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|•|△y|≠0,則稱點(diǎn)B為點(diǎn)A的“相關(guān)點(diǎn)”,記作:B=τ(A),已知P0(x0,y0),(x0,y0∈Z)為平面上一個定點(diǎn),平面上點(diǎn)列{Pi}滿足:Pi=τ(Pi-1),且點(diǎn)Pi的坐標(biāo)為(xi,yi),其中i=1,2,3,…,n,則點(diǎn)P0的“相關(guān)點(diǎn)”有( 。﹤.
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①若命題p:?x0R,x02+x0+1<0,則?p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
④若a>0,b>0,a+b=4,則
1
a
+
1
b
的最小值為1.
其中正確結(jié)論的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為R上的可導(dǎo)函數(shù),且滿足f(x)>f′(x),對任意正實數(shù)a,下面不等式恒成立的是(  )
A、f(a)>
f(0)
ea
B、f(a)<
f(0)
ea
C、f(a)>eaf(0)
D、f(a)<eaf(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E是AB的中點(diǎn),P是B1C的中點(diǎn).
(Ⅰ)求證:PB∥平面B1ED;
(Ⅱ)求點(diǎn)P到平面B1ED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是根據(jù)某賽季甲、乙兩名籃球運(yùn)動員每場比賽得分情況畫出的莖葉圖.從這個莖葉圖可以看出甲、乙兩名運(yùn)動員得分的中位數(shù)分別是
 

查看答案和解析>>

同步練習(xí)冊答案