【題目】隨著城市化、工業(yè)化進(jìn)程加速,汽車工業(yè)快速發(fā)展,國(guó)際原油供求矛盾逐步加深,全球氣候變暖日益明顯.在此背景下,以節(jié)能減排為重要目標(biāo)的新能源汽車技術(shù)不斷取得突破,并呈現(xiàn)快速突破、競(jìng)相發(fā)展的態(tài)勢(shì).201510月份,國(guó)家發(fā)改委等部委在《電動(dòng)汽車充電基礎(chǔ)設(shè)施發(fā)展指南(2015-2020年)》中要求,新建住宅配建停車位應(yīng)100%建設(shè)充電基礎(chǔ)設(shè)施或預(yù)留建設(shè)安裝條件,大型公共建筑物配建停車場(chǎng)、社會(huì)公共停車場(chǎng)建設(shè)充電基礎(chǔ)設(shè)施或預(yù)留建設(shè)安裝條件的車位比例不低于10%,每2000輛電動(dòng)汽車應(yīng)至少配套建設(shè)一座公共充電站.

為鼓勵(lì)新能源汽車發(fā)展,國(guó)家和地方出臺(tái)了相關(guān)補(bǔ)貼政策.

附表12018年某市新能源汽車補(bǔ)貼政策:

純電續(xù)航里程(

國(guó)家補(bǔ)貼(萬元/輛)

地方補(bǔ)貼(萬元/輛)

1.50

0.75

2.4

1.2

3.4

1.7

4.5

2.25

5

2.5

為了獲得更大的市場(chǎng)分額,搶占未來新能源汽車銷售先機(jī).該市對(duì)2018年各類型新能源汽車銷售占比情況進(jìn)行了調(diào)查.

附表22018年該市各類型新能源汽車銷售占比情況:

純電續(xù)航里程

占比

5%

20%

35%

25%

15%

1)用2018年新能源汽車銷售占比來估計(jì)2019年的新能源汽車銷售情況,求2019年每輛新能源汽車的平均補(bǔ)貼.若該市2019年想實(shí)現(xiàn)3000萬元補(bǔ)貼,估計(jì)需要銷售新能源汽車多少量.(補(bǔ)貼政策按每輛車補(bǔ)貼=國(guó)家補(bǔ)貼+地方補(bǔ)貼,結(jié)果四舍五入保留整數(shù))

2)該市新能源汽車促進(jìn)辦公寶為了調(diào)查新能源汽車補(bǔ)貼發(fā)放情況,希望從2018年銷售的新能漂源汽車中抽取10輛車的信息進(jìn)行回訪核實(shí).以各類型新能源汽車銷售占比為概率.求抽到幾輛續(xù)航里程小于新能源汽車的可能性最大.

【答案】15.45見解析,550輛;(26

【解析】

1)根據(jù)題意列出補(bǔ)貼的分布列,根據(jù)期望公式求解;

2)設(shè)從該店抽取的10輛車中續(xù)航里程小于輛,則,根據(jù)二項(xiàng)分布求解.

1)由題意知每輛車的補(bǔ)貼的分布列如下表:

2.25

3.6

5.1

6.75

7.5

5%

20%

35%

25%

15%

需要銷售新能源汽車為(輛)

2)設(shè)從該店抽取的10輛車中續(xù)航里程小于輛,則

可知,

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知多面體PABCDE的底面ABCD是邊長(zhǎng)為2的菱形,底面ABCD,,且.

1)證明:平面平面;

2)若,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)建文明城”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù),滿分100分),從中隨機(jī)抽取一個(gè)容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40,100]內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯(cuò)誤的是(

A.第三組的頻數(shù)為18

B.根據(jù)頻率分布直方圖估計(jì)眾數(shù)為75

C.根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)為75

D.根據(jù)頻率分布直方圖估計(jì)樣本的中位數(shù)為75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐SABCD中,側(cè)面SCD為鈍角三角形且垂直于底面ABCD,CDSD,點(diǎn)MSA的中點(diǎn),AD//BC,∠ABC90°,ABADBCa

1)求證:平面MBD⊥平面SCD;

2)若∠SDC120°,求三棱錐CMBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,半徑為2的圓相切,圓心軸上且在直線的右上方.

1)求圓的方程;

2)過點(diǎn)的直線與圓交于,兩點(diǎn)(軸上方),問在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 t為參數(shù)),若以O為極點(diǎn),x軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;

2)將所得曲線C向右平移1個(gè)單位長(zhǎng)度,再將曲線C上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果對(duì)某對(duì)象連續(xù)實(shí)施兩次變換后的結(jié)果就是變換前的對(duì)象,那么我們稱這種變換為回歸變換.如:對(duì)任意一個(gè)實(shí)數(shù),變換:取其相反數(shù).因?yàn)橄喾磾?shù)的相反數(shù)是它本身,所以變換取實(shí)數(shù)的相反數(shù)是一種回歸變換.有下列3種變換:

①對(duì),變換:求集合A的補(bǔ)集;

②對(duì)任意,變換:求z的共軛復(fù)數(shù);

③對(duì)任意,變換:k,b均為非零實(shí)數(shù)).

其中是回歸變換的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多寓意美好的曲線,曲線被稱為四葉玫瑰線(如圖所示).

給出下列三個(gè)結(jié)論:

①曲線關(guān)于直線對(duì)稱;

②曲線上任意一點(diǎn)到原點(diǎn)的距離都不超過;

③存在一個(gè)以原點(diǎn)為中心、邊長(zhǎng)為的正方形,使得曲線在此正方形區(qū)域內(nèi)(含邊界).

其中,正確結(jié)論的序號(hào)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案