比較下列兩組數(shù)的大小,并說明理由.
(1)
7
+
10
3
+
14

(2)當(dāng)x>1時(shí),x3與x2-x+1.
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:利用作差法即可比較數(shù)的大。
解答: 解:(1)(
7
+
10
2-(
3
+
14
2=17+2
70
-(17+2
42
)=2
70
-2
42
>0

則(
7
+
10
2>(
3
+
14
2,
7
+
10
3
+
14

(2)x3-(x2-x+1)=x3-x2+x-1=x2(x-1)+(x-1)=(x-1)(x2+1),
∵x>1時(shí),∴x-1>0,
∴x3-(x2-x+1)=(x-1)(x2+1)>0,
即x3>x2-x+1.
點(diǎn)評:本題主要考查數(shù)的大小比較,利用作差法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由-1,0,1,2,3這五個(gè)數(shù)中選三個(gè)不同的數(shù)組成二次函數(shù)y=a2x+bx+c的系數(shù).
(1)開口向下的拋物線有幾條?
(2)開口向上且不過原點(diǎn)的拋物線有多少條?
(3)與x軸的正、負(fù)半軸各有一個(gè)交點(diǎn)的拋物線有多少條?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(x1,y1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任意一點(diǎn),F(xiàn)為橢圓的右焦點(diǎn).
(1)若橢圓的離心率為e,試用e、a、x1表示|MF|,并求|MF|的最值;
(2)已知直線m與圓x2+y2=b2相切,并與橢圓交于A、B兩點(diǎn),且直線m與圓的切點(diǎn)Q在y軸的右側(cè),若a=2,b=1,求△ABF的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

南昌二中某學(xué)生社團(tuán)為了選拔若干名社團(tuán)義務(wù)宣傳員,從300名志愿者中隨機(jī)抽取了50名進(jìn)行有關(guān)知識的測試,成績(均為整數(shù))按分?jǐn)?shù)段分成六組:第一組[40,50),第二組[50,60),…,第六組[90,100],第一、二、三組的人數(shù)依次構(gòu)成等差數(shù)列,如圖是按上述分組方法得到的頻率分布直方圖的一部分.規(guī)定成績不低于66分的志愿者入選為義務(wù)宣傳員.
(1)求第二組、第三組的頻率并補(bǔ)充完整頻率分布直方圖;
(2)由所抽取志愿者的成績分布,估計(jì)該社團(tuán)的300名志愿者中有多少人可以入選為義務(wù)宣傳員?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義在R上,對任意的x,y∈R,f(x)≠0,且f(x+y)=f(x)f(y).
(Ⅰ)求f(0),并證明:f(x-y)=
f(x)
f(y)
;
(Ⅱ)若f(x)單調(diào),且f(1)=2.設(shè)向量
a
=(
2
cos
θ
2
,1),
b
=(
2
λsin
θ
2
,cos2θ),對任意θ∈[0,2π),f(
a
b
)-f(3)≤0恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.
(Ⅰ)求圖中a的值,并估計(jì)日需求量的眾數(shù);
(Ⅱ)某日,經(jīng)銷商購進(jìn)130件該種產(chǎn)品,根據(jù)近期市場行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤為S元.
  (。⿲表示為x的函數(shù);
  (ⅱ)根據(jù)直方圖估計(jì)當(dāng)天純利潤S不少于3400元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1、F2分別是橢圓
x2
2
 
+
y2
1
 
=1的左、右焦點(diǎn),過F2作傾斜角為
π
4
的直線,求△F1AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖銳角三角形ABC的角平分線AD的延長線交它的外接圓于點(diǎn)E,若△ABC面積S=
3
4
AD•AE
,求∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)某工產(chǎn)加工的某種鋼管,內(nèi)徑與規(guī)定的內(nèi)徑尺寸之差是離散型隨機(jī)變量;
(3)隨機(jī)變量的方差和標(biāo)準(zhǔn)差都反映了隨機(jī)變量的取值偏離于均值的平均程度,它們越小,則隨機(jī)變量偏離于均值的平均程度越。
(4)若關(guān)于x的不等式|x-2|+|x-a|≥a在R上恒成立,則a的最大值是1;
(5)甲、乙兩人向同一目標(biāo)同時(shí)射擊一次,事件A:“甲、乙中至少一人擊中目標(biāo)”與事件B:“甲,乙都沒有擊中目標(biāo)”是相互獨(dú)立事件.
其中結(jié)論正確的是
 
.(把所有正確結(jié)論的序號填上)

查看答案和解析>>

同步練習(xí)冊答案