分析 (Ⅰ)利用a42=a10計(jì)算可知公差d=$\frac{1}{3}$,進(jìn)而計(jì)算可得結(jié)論;
(II)通過(I)可知an•3n=(n+2)•3n-1,進(jìn)而利用錯(cuò)位相減法計(jì)算即得結(jié)論.
解答 解:(Ⅰ)由條件知a42=a10,即(1+3d)2=1+9d,
解得:d=$\frac{1}{3}$或d=0(舍),
∴an=$\frac{1}{3}$n+$\frac{2}{3}$;
(II)∵an•3n=(n+2)•3n-1,
∴Sn=3•30+4•3+5•32+…+(n+2)•3n-1,
3Sn=3•3+4•32+…+(n+1)•3n-1+(n+2)•3n,
錯(cuò)位相減得:-2Sn=3+3+32+…+3n-1-(n+2)•3n
=3+$\frac{3(1-{3}^{n-1})}{1-3}$-(n+2)•3n
=$\frac{3}{2}$-(n+$\frac{3}{2}$)•3n,
∴Sn=$\frac{2n+3}{4}$•3n-$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,3) | B. | (-1,7) | C. | (-1,10) | D. | (-10,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | 5 | C. | $\sqrt{10}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com