【題目】某公司對旗下的甲、乙兩個門店在19月份的營業(yè)額(單位:萬元)進行統(tǒng)計并得到如圖折線圖.

下面關(guān)于兩個門店營業(yè)額的分析中,錯誤的是( )

A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元

B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店營業(yè)額的平均值在[20,25]內(nèi)

C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢

D.乙門店在這9個月份中的營業(yè)額的極差為25萬元

【答案】A

【解析】

根據(jù)折線圖依次判斷每個選項:甲門店的營業(yè)額平均值遠低于32萬元,A錯誤,其他正確,得到答案.

對于A,甲門店的營業(yè)額折線圖具有較好的對稱性,營業(yè)額平均值遠低于32萬元,A錯誤.

對于B,甲門店的營業(yè)額的平均值為21.6

即該門店營業(yè)額的平均值在區(qū)間[20,25]內(nèi),B正確.

對于C,根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢,C正確.

對于D,乙門店在這9個月中的營業(yè)額最大值為30萬元,最小值為5萬元,

則極差為25萬元,D正確.

故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,求的最值;

2)若當時,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某運輸公司每天至少向某地運送物質(zhì),該公司有8輛載重為型卡車與4輛載重為型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為型卡車4次,型卡車3次;每輛卡車每天往返的成本為型卡車320元,型卡車504元,你認為該公司怎樣調(diào)配車輛,使運費成本最低,最低運費是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是,假設兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.

1)求甲射擊4次,至多1次未擊中目標的概率;

2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率;

3)假設某人連續(xù)2次未擊中目標,則停止射擊,求乙恰好射擊5次后被中止射擊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點M是線段AB的中點,線段CMBD交于點P.(1) =(3,5),求點C的坐標;(2) ||=||時,求點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0m2,動點M到兩定點F1(﹣m,0),F2m,0)的距離之和為4,設點M的軌跡為曲線C,若曲線C過點.

1)求m的值以及曲線C的方程;

2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是否存在常數(shù)a,b,c,使等式N+都成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4位同學在同一天的上午、下午參加“身高與體重”“立定跳遠”“肺活量”“握力”“臺階”5個項目的測試,每位同學上午、下午各測試1個項目,且不重復.若上午不測“握力”項目,下午不測“臺階”項目,其余項目上午、下午都各測試1人,則不同的安排方式有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(3’+7’+8’)已知以a1為首項的數(shù)列{an}滿足:an1.

1a11,c1,d3時,求數(shù)列{an}的通項公式;

20a11,c1d3時,試用a1表示數(shù)列{an}的前100項的和S100;

30a1m是正整數(shù)),c,d3m時,求證:數(shù)列a2,a3m+2,a6m+2,a9m+2成等比數(shù)列當且僅當d3m.

查看答案和解析>>

同步練習冊答案