【題目】設(shè)定義在上的函數(shù)滿(mǎn)足:對(duì)任意的,當(dāng)時(shí),都有.

(1)若,求實(shí)數(shù)的取值范圍;

(2)若為周期函數(shù),證明:是常值函數(shù);

(3)若上滿(mǎn)足:,,,

①記),求數(shù)列的通項(xiàng)公式;② 求的值.

【答案】(1);(2)見(jiàn)解析;(3)①;②.

【解析】

1)直接由fx1)﹣fx2≤0求得a的取值范圍;

2)若fx)是周期函數(shù),記其周期為Tk,任取x0R,則有fx0)=fx0+Tk),證明對(duì)任意x[x0,x0+Tk]fx0fxfx0+Tk),可得fx0)=fx0+nTk),nZ,再由[x03Tk,x02Tk][x02Tkx0Tk][x0Tk,x0][x0,x0+Tk][x0+Tk,x0+2Tk]R,可得對(duì)任意xR,fx)=fx0)=C,為常數(shù);

3)依題意,可求得f1)=1,ff1,再分別利用ffx),即可求得答案.

1)由fx1fx2),得fx1)﹣fx2)=ax13x23≤0,

x1x2,∴x13x230,得a≥0

a的范圍是[0+∞);

2)若fx)是周期函數(shù),記其周期為Tk,任取x0R,則有

fx0)=fx0+Tk),

由題意,對(duì)任意x[x0,x0+Tk],fx0fxfx0+Tk),

fx0)=fx)=fx0+Tk).

又∵fx0)=fx0+nTk),nZ,并且

[x03Tk,x02Tk][x02Tkx0Tk][x0Tk,x0][x0,x0+Tk][x0+Tk,x0+2Tk]R

∴對(duì)任意xR,fx)=fx0)=C,為常數(shù);

3)①∵f0)=0,fx+f1x)=1,

f1)=1

f+f1)=1,

f

ffx),

x1時(shí),可得ff1,

ff)=(2

f)=(n,

an

②∵a4f,a5f

fx+f1x)=1,

x,則f

ffx),可得ff,

于是ff,f,

fff

f

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+sin x,x∈(-1,1),則滿(mǎn)足f(a2-1)+f(a-1)>0的a的取值范圍是( )

A. (0,2)B. (1,)C. (1,2)D. (0,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的圖像與曲線(xiàn)恰好有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn).

(1)若直線(xiàn)斜率為1,過(guò)橢圓的右焦點(diǎn),求弦的長(zhǎng);

(2)若,且為銳角,求直線(xiàn)斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若對(duì)于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),過(guò)其焦點(diǎn)作斜率為1的直線(xiàn)交拋物線(xiàn),兩點(diǎn),且線(xiàn)段的中點(diǎn)的縱坐標(biāo)為4.

(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

(2)若不過(guò)原點(diǎn)且斜率存在的直線(xiàn)與拋物線(xiàn)相交于、兩點(diǎn),且.求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們休閑方式的調(diào)查中,共調(diào)查了124人,其中女性70人,男性54.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).能否在犯錯(cuò)誤的概率不超過(guò)2.5%的前提下認(rèn)為性別與休閑方式是否有關(guān)系?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處切線(xiàn)的方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時(shí),恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案