【題目】四棱錐中,底面是邊長為的菱形,側(cè)面底面,, , 是中點(diǎn),點(diǎn)在側(cè)棱上.
(Ⅰ)求證: ;
(Ⅱ)若是中點(diǎn),求二面角的余弦值;
(Ⅲ)是否存在,使平面?若存在,求出的值;若不存在,說明理由.
【答案】(Ⅰ)見解析;(Ⅱ).(Ⅲ).
【解析】試題分析:(Ⅰ)證明AD⊥平面POB,即可證明AD⊥PB;(Ⅱ)證明PO⊥底面ABCD,建立空間直角坐標(biāo)系,求出平面DEQ的法向量,平面DQC的法向量,利用向量的夾角公式,即可求得結(jié)論;(Ⅲ)求出平面DEQ法向量,利用PA∥平面DEQ,即,從而可得結(jié)論.
解析:
(Ⅰ)取中點(diǎn),連接.
因?yàn)?/span>,所以.
因?yàn)榱庑?/span>中, ,所以.
所以.
因?yàn)?/span>,且平面,所以平面.
所以.
(Ⅱ)由(Ⅰ)可知, ,
因?yàn)閭?cè)面底面,且平面底面,所以底面.
以為坐標(biāo)原點(diǎn),如圖建立空間直角坐標(biāo)系.
則,因?yàn)?/span>為中點(diǎn),所以.
所以,所以平面的法向量為.
因?yàn)?/span>,設(shè)平面的法向量為,
則,即.
令,則,即.
所以.
由圖可知,二面角為銳角,所以余弦值為.
(Ⅲ)設(shè)
由(Ⅱ)可知.
設(shè),則,
又因?yàn)?/span>,所以,即.
所以在平面中, ,
所以平面的法向量為,
又因?yàn)?/span>平面,所以,
即,解得.
所以當(dāng)時(shí), 平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一鐵塊高溫融化后制成一張厚度忽略不計(jì)、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個(gè)矩形(B,C全等),用來制成一個(gè)柱體.現(xiàn)有兩種方案:
方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個(gè)圓形作為圓柱的兩個(gè)底面;
方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個(gè)正方形(各邊分別與或垂直)作為正四棱柱的兩個(gè)底面.
(1)設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設(shè)的長為dm,則當(dāng)為多少時(shí),能使按方案②制成的正四棱柱的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右頂點(diǎn)分別為右焦點(diǎn)為,直線是橢圓在點(diǎn)處的切線.設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線與直線的交點(diǎn)為,且當(dāng)時(shí), 是等腰三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)橢圓的長軸長等于,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),試判斷以為直徑的圓與直線的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于,),點(diǎn)在線段上,且滿足.已知,,設(shè).
(1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;
(2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一條動(dòng)直線3(m+1)x+(m-1)y-6m-2=0,
(1)求證:直線恒過定點(diǎn),并求出定點(diǎn)P的坐標(biāo);
(2)若直線與x、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6,若存在,求出方程;若不存在,請(qǐng)說明理由.
(3)若直線與x、y軸的正半軸分別交于A,B兩點(diǎn),當(dāng)取最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)的部分圖象,M,N是它與x軸的兩個(gè)不同交點(diǎn),D是M,N之間的最高點(diǎn)且橫坐標(biāo)為,點(diǎn)是線段DM的中點(diǎn).
(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;
(2)若時(shí),函數(shù)的最小值為,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過長期觀察得到:在交通繁忙的時(shí)段內(nèi),某公路汽車的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間的函數(shù)關(guān)系為
(1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí),車流量最大,最大車流量為多少?(精確到0.1千輛/小時(shí))
(2)若要求在該時(shí)段內(nèi)車流量超過10千輛/小時(shí),則汽車的平均速度應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項(xiàng)和為,求證: .
【答案】(I);(II);(III)證明見解析.
【解析】試題分析:(Ⅰ)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,先證明因此時(shí), 在上恒成立,再證明當(dāng)時(shí)不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前項(xiàng)和為,結(jié)合(II)可得,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函數(shù)的單調(diào)遞減區(qū)間為 .
(Ⅱ)由得,
當(dāng)時(shí),因?yàn)?/span>,所以顯然不成立,因此.
令,則,令,得.
當(dāng)時(shí), , ,∴,所以,即有.
因此時(shí), 在上恒成立.
②當(dāng)時(shí), , 在上為減函數(shù),在上為增函數(shù),
∴,不滿足題意.
綜上,不等式在上恒成立時(shí),實(shí)數(shù)的取值范圍是.
(III)證明:由知數(shù)列是的等差數(shù)列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 將以上各式左右兩邊分別相加,得
.因?yàn)?/span>
所以
所以.
【題型】解答題
【結(jié)束】
22
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com