【題目】如圖1,在等腰梯形中,,,的中點(diǎn).現(xiàn)分別沿,折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.

(Ⅰ)若、分別為、的中點(diǎn),求證:平面平面

(Ⅱ)求多面體的體積.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).

【解析】

1)取中點(diǎn),連,由已知可得,,為正三角形,

,可得平面,平面,

平面,從而有,即可證明結(jié)論.

(2),只需求出到平面的距離,由(1)得點(diǎn)到平面的距離等于點(diǎn)到平面的距離為,即可求出結(jié)論.

1)取中點(diǎn),連,

的中點(diǎn),∴

又∵平面,平面

平面,

在圖1等腰梯形中,,,

,,,

,同理

,,為正三角形,

.

又∵平面平面,平面平面,

平面,∴平面

同理可證平面,

又∵平面,平面

平面,

,平面平面,

∴平面平面

(Ⅱ)連接,作

由(Ⅰ)得,平面,

∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離,

等于點(diǎn)到平面的距離的,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對(duì)于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是菱形,,平面平面是等邊三角形.

1)求證:;

2)若的面積為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:?jiǎn)柾し綆缀危俊贝笾乱馑际牵河幸粋(gè)四棱錐下底邊長(zhǎng)為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺(tái)狀方亭,且四棱臺(tái)的上底邊長(zhǎng)為六尺,則該正四棱臺(tái)的高為________尺,體積是_______立方尺(注:1=10尺).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某手機(jī)生產(chǎn)企業(yè)為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到單價(jià)(單位:千元)與銷量(單位:百件)的關(guān)系如下表所示:

單價(jià)(千元)

1

1.5

2

2.5

3

銷量(百件)

10

8

7

6

已知.

(Ⅰ)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程

(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值,當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差滿足時(shí),則稱為一個(gè)好數(shù)據(jù),現(xiàn)從5個(gè)銷售數(shù)據(jù)中任取3個(gè),求其中好數(shù)據(jù)的個(gè)數(shù)的分布列和數(shù)學(xué)期望.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓經(jīng)過(guò)拋物線的焦點(diǎn),斜率為1的直線經(jīng)過(guò)且與橢圓交于兩點(diǎn).

1)求面積;

2)動(dòng)直線與橢圓有且僅有一個(gè)交點(diǎn),且與直線分別交于兩點(diǎn),為橢圓的右焦點(diǎn),證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)若,求直線與曲線的交點(diǎn)的直角坐標(biāo);

2)若點(diǎn)在曲線上,且到直線距離的最大值為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在市中心有一矩形空地.市政府欲將它改造成綠化景觀帶,具體方案如下:在邊上分別取點(diǎn)MN,在三角形內(nèi)建造假山,在以為直徑的半圓內(nèi)建造噴泉,其余區(qū)域栽種各種觀賞類植物.

1)若假山區(qū)域面積為,求噴泉區(qū)域面積的最小值;

2)若,求假山區(qū)域面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案