【題目】某手機(jī)生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到單價(jià)(單位:千元)與銷量(單位:百件)的關(guān)系如下表所示:
單價(jià)(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
銷量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計(jì)值,當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差滿足時(shí),則稱為一個(gè)“好數(shù)據(jù)”,現(xiàn)從5個(gè)銷售數(shù)據(jù)中任取3個(gè),求其中“好數(shù)據(jù)”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
參考公式:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面 平面,,, .
(1)證明
(2)設(shè)點(diǎn)在線段上,且,若的面積為,求四棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).由2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形中,,,,為的中點(diǎn).現(xiàn)分別沿,將和折起,點(diǎn)折至點(diǎn),點(diǎn)折至點(diǎn),使得平面平面,平面平面,連接,如圖2.
(Ⅰ)若、分別為、的中點(diǎn),求證:平面平面;
(Ⅱ)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假是特殊的寒假,因?yàn)橐咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計(jì) | |
男生 | |||
女生 | |||
合計(jì) | 120 |
(2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個(gè)數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)在內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) (,).
(1)若展開式中第5項(xiàng)與第7項(xiàng)的系數(shù)之比為3∶8,求k的值;
(2)設(shè)(),且各項(xiàng)系數(shù),,,…,互不相同.現(xiàn)把這個(gè)不同系數(shù)隨機(jī)排成一個(gè)三角形數(shù)陣:第1列1個(gè)數(shù),第2列2個(gè)數(shù),…,第n列n個(gè)數(shù).設(shè)是第i列中的最小數(shù),其中,且i,.記的概率為.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com