【題目】已知圓的圓心為,圓的圓心為,一動(dòng)圓與圓內(nèi)切,與圓外切.

(1)求動(dòng)圓圓心的軌跡方程;

(2)過點(diǎn)的直線與曲線交于,兩點(diǎn),點(diǎn)是直線上任意點(diǎn),直線,,的斜率分別為,,,試探求,的關(guān)系,并給出證明.

【答案】(1);(2),,成等差數(shù)列,證明見解析.

【解析】

1)根據(jù)兩圓的位置關(guān)系,得到,從而得到橢圓的長(zhǎng)軸和焦距,求出橢圓的方程;(2)當(dāng)斜率為時(shí),得到,當(dāng)斜率不為,設(shè)的方程設(shè)為,與橢圓聯(lián)立,得到,再表示出并進(jìn)行化簡(jiǎn),得到,從而得到結(jié)論.

(1)設(shè)動(dòng)圓的半徑為,動(dòng)圓與圓內(nèi)切,與圓外切.

,.

兩式相加得,

由橢圓定義知,點(diǎn)的軌跡是以、為焦點(diǎn),

焦距為,長(zhǎng)軸長(zhǎng)為

,,所以

的橢圓其方程為.

(2)設(shè),,,

斜率為,則,

,,,所以

故猜想,成等差數(shù)列,

設(shè)直線的方程設(shè)為,

,消去,

則有,

,,

,

,所以,,

所以

,

,

所以可以得到,,

所以,綜上所述,,,成等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a0,函數(shù)fx)=|2x+2|+|xa|的最小值為2

1)求實(shí)數(shù)a的值,并作出yfx)的圖象;

2)當(dāng)m0,n0,且m+n2時(shí),m2+n2fx)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年7月1日迎來了我國(guó)建黨98周年,6名老黨員在這天相約來到革命圣地之一的西柏坡.6名老黨員中有3名黨員當(dāng)年在同一個(gè)班,他們站成一排拍照留念時(shí),要求同班的3名黨員站在一起,且滿足條件的每種排法都要拍一張照片,若將照片洗出來,每張照片0.5元(不含過塑費(fèi)),且有一半的照片需要過塑,每張過塑費(fèi)為0.75元.若將這些照片平均分給每名老黨員(過塑的照片也要平均分),則每名老黨員需要支付的照片費(fèi)為( )

A.20.5B.21元C.21.5元D.22元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對(duì)其所在銷售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購買量單位:進(jìn)行了問卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費(fèi)者月餅購買量在的概率;

已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)這1000名消費(fèi)者的人均月餅購買量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場(chǎng)需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房產(chǎn)中介統(tǒng)計(jì)了深圳市某高檔小區(qū)從201812月至201911月當(dāng)月在售二手房均價(jià)(單位:萬元/平方米)的散點(diǎn)圖,如下圖所示,圖中月份代碼112分別對(duì)應(yīng)201812月至201911月的相應(yīng)月份.

根據(jù)散點(diǎn)圖選擇兩個(gè)模型進(jìn)行擬合,根據(jù)數(shù)據(jù)處理得到兩個(gè)回歸方程分別為,并得到以下一些統(tǒng)計(jì)量的值:

殘差平方和

0.0148557

0.0048781

總偏差平方和

0.069193

1)請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好;

2)某位購房者擬于20205月份購買深圳市福田區(qū)平方米的二手房(欲購房為其家庭首套房).若該小區(qū)所有住房的房產(chǎn)證均已滿3年,請(qǐng)你利用(1)中擬合效果更好的模型解決以下問題:

i)估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費(fèi);房屋均價(jià)精確到0.01萬元/平方米)

ii)若該購房者擬用不超過760萬元的資金購買該小區(qū)一套二手房,試估算其可購買的最大面積(精確到1平方米)

附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項(xiàng)稅費(fèi),稅費(fèi)是按照房屋的計(jì)稅價(jià)格進(jìn)行征收.(計(jì)稅價(jià)格=房款)

征收方式見下表:

購買首套房面積(平方米)

契稅(買方繳納)的稅率

參考數(shù)據(jù):,,,,,

參考公式:相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程;

2)設(shè)點(diǎn)上,點(diǎn)上(異于極點(diǎn)),若四點(diǎn)依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于MN兩點(diǎn)。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求的極值;

(2)若對(duì)任意的,當(dāng)時(shí),恒成立,求實(shí)數(shù)的最大值;

(3)若函數(shù)恰有兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若項(xiàng)數(shù)為的單調(diào)增數(shù)列滿足:①;②對(duì)任意,存在使得;則稱數(shù)列具有性質(zhì).

1)分別判斷數(shù)列1,3,4,712,35是否具有性質(zhì),并說明理由;

2)若數(shù)列具有性質(zhì),且.

i)證明數(shù)列的項(xiàng)數(shù);

ii)求數(shù)列中所有項(xiàng)的和的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案