【題目】橢圓=1(a>b>0)的一個(gè)焦點(diǎn)為F1,若橢圓上存在一個(gè)點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點(diǎn),則橢圓的離心率為________

【答案】

【解析】

設(shè)線段的中點(diǎn)為,另一個(gè)焦點(diǎn)由題意知,,的中位線,由橢圓的定義知,,,,直角三角形中,由勾股定理得,,又可得,故有,由此可求得離心率,故答案為.

方法點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解.本題中,根據(jù)橢圓的定義及勾股定理,可以建立關(guān)于焦半徑和焦距的關(guān)系.從而找出之間的關(guān)系,求出離心率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并寫出取得最大值時(shí)x的集合;

2)將fx)的函數(shù)圖象向左平移φφ0)個(gè)單位后得到的函數(shù)gx)是偶函數(shù),求φ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O經(jīng)過橢圓C=1ab0)的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)(b,)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與圓O相切,與橢圓C交于MN兩點(diǎn),且|MN|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx),若fx0)=x0,則稱x0fx)的不動(dòng)點(diǎn).設(shè)fx)=x3+ax2+bx+3.

1)當(dāng)a0時(shí),

i)求fx)的極值點(diǎn);

)若存在x0既是fx)的極值點(diǎn),也是fx)的不動(dòng)點(diǎn),求b的值;

2)是否存在a,b,使得fx)有兩個(gè)極值點(diǎn),且這兩個(gè)極值點(diǎn)均為fx)的不動(dòng)點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在長方體中,,,,點(diǎn)上的一個(gè)動(dòng)點(diǎn),平面與棱交于點(diǎn),給出下列命題:

四棱錐的體積為20

存在唯一的點(diǎn),使截面四邊形的周長取得最小值

當(dāng)點(diǎn)不與,重合時(shí),在棱上均存在點(diǎn),使得平面

存在唯一的點(diǎn),使得平面,且

其中正確的命題是_____(填寫所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形EFMN,,,以EF的中點(diǎn)O為原點(diǎn),建立如圖的平面直角坐標(biāo)系,若橢圓EF為焦點(diǎn),且經(jīng)過MN兩點(diǎn).

1)求橢圓的方程;

2)直線相交于AB兩點(diǎn),在y軸上是否存在點(diǎn)C,使得△ABC為正三角形,若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,城市空氣質(zhì)量也越來越引起了人民的關(guān)注,如圖是我國某大城市20181月至8月份的空氣質(zhì)量檢測結(jié)果,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是空氣質(zhì)量合格,下面說法錯(cuò)誤的是(

A.6月的空氣質(zhì)量最差

B.8月是空氣質(zhì)量最好的一個(gè)月

C.第二季度與第一季度相比,空氣質(zhì)量合格天數(shù)的比重下降了

D.1月至8月空氣質(zhì)量合格天數(shù)超過20天的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),直線相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案