【題目】如圖,已知在長(zhǎng)方體中,,,,點(diǎn)為上的一個(gè)動(dòng)點(diǎn),平面與棱交于點(diǎn),給出下列命題:
①四棱錐的體積為20;
②存在唯一的點(diǎn),使截面四邊形的周長(zhǎng)取得最小值;
③當(dāng)點(diǎn)不與,重合時(shí),在棱上均存在點(diǎn),使得平面;
④存在唯一的點(diǎn),使得平面,且.
其中正確的命題是_____(填寫(xiě)所有正確的序號(hào))
【答案】①②③④
【解析】
由題意逐個(gè)討論所給的命題,判斷它們的真假.
解:①由題意可得,
,所以①正確;
②將長(zhǎng)方體展開(kāi),如圖所示,恰好過(guò)點(diǎn)時(shí),截面的周長(zhǎng)為,
而在中,,所以最小值為,
由面面平行的性質(zhì),可得四邊形為平行四邊形,且為展開(kāi)圖中唯一的點(diǎn),所以②正確;
③點(diǎn)不與,重合,則不會(huì)為,即不在面內(nèi),
可作出的平面與平行,所以在棱上均有相應(yīng)的,使得面,故③正確;
④因?yàn)?/span>,可得對(duì)角面為正方形,可得,
若時(shí),由三垂線定理可得,即有面,
矩形中,,所以,所以,故④正確
綜上可得:正確為①②③④.
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;
(2)若P(1,0),直線C2與曲線C1相交于A,B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中, 是拋物線的焦點(diǎn), 是拋物線上的任意一點(diǎn),當(dāng)位于第一象限內(nèi)時(shí), 外接圓的圓心到拋物線準(zhǔn)線的距離為.
(1)求拋物線的方程;
(2)過(guò)的直線交拋物線于兩點(diǎn),且,點(diǎn)為軸上一點(diǎn),且,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知asin(A+B)=csin.
(1)求A;
(2)求sinBsinC的取值范圍;
(3)若△ABC的面積為,周長(zhǎng)為8,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓+=1(a>b>0)的一個(gè)焦點(diǎn)為F1,若橢圓上存在一個(gè)點(diǎn)P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點(diǎn),則橢圓的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,,G為AB的中點(diǎn),.
(1)求證:平面CDEF;
(2)求平面ACD與平面BCF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)已知直線:,:若直線與關(guān)于對(duì)稱,又函數(shù)在處的切線與平行,求實(shí)數(shù)的值;
(2)若,證明:當(dāng)時(shí),恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次考試共有12道選擇題,每道選擇題都有4個(gè)不同的選項(xiàng),其中有且只有一個(gè)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:每題只選一個(gè)選項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分,某考生已確定有8道題的答案是正確的,其余題中,有兩道題都可判斷兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道題可以判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因?yàn)椴焕斫忸}意只好亂猜,請(qǐng)求出該考生:
(1)得60分的概率;
(2)所得分?jǐn)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則( )
A.sgn[g(x)]=sgn xB.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com