【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角為.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

【答案】(1)直線的參數(shù)方程為 (為參數(shù));曲線的直角坐標(biāo)方程為;(2)

【解析】試題分析:(1)先根據(jù)直線參數(shù)方程標(biāo)準(zhǔn)式寫直線的參數(shù)方程,利用化簡極坐標(biāo)方程為直角坐標(biāo)方程;(2)將直線參數(shù)方程代入圓方程,再根據(jù)參數(shù)幾何意義化簡,最后根據(jù)韋達(dá)定理代入化簡求值

試題解析:(1)直線的參數(shù)方程為 (為參數(shù)).

,∴,∴,即,

故曲線的直角坐標(biāo)方程為.

(2)將的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,

顯然, ∴, ∴,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ].
(1)若| |=| |,求x的值;
(2)設(shè)函數(shù)f(x)= ,求f(x)的最大值及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)圖象上存在A,B兩個(gè)不同的點(diǎn)與g(x)圖象上A′,B′兩點(diǎn)關(guān)于y軸對稱,則b的取值范圍為(
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x>0).
(1)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(2)若f(x)> 恒成立,求整數(shù)k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形均為菱形, ,且.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,E,F(xiàn)分別為PA,BD中點(diǎn),PA=PD=AD=2.
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求二面角E﹣DF﹣A的余弦值;
(Ⅲ)在棱PC上是否存在一點(diǎn)G,使GF⊥平面EDF?若存在,指出點(diǎn)G的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若等比數(shù)列{an}的前n項(xiàng)和Sn=2016n+t(t為常數(shù)),則a1的值為(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:函數(shù)的圖象關(guān)于直線對稱,且當(dāng)時(shí)是函數(shù)的導(dǎo)函數(shù))成立.若,則的大小關(guān)系是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求的中點(diǎn)到直線 的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案