【題目】已知函數(shù)f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)圖象上存在A,B兩個(gè)不同的點(diǎn)與g(x)圖象上A′,B′兩點(diǎn)關(guān)于y軸對(duì)稱,則b的取值范圍為(
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)

【答案】D
【解析】解:由題意知,方程f(﹣x)=g(x)在(0,+∞)上有兩個(gè)不同的解,
即x2+x﹣ =x2+bx﹣2,
則b= +1﹣
則b<1,
又b= ,
設(shè)h(x)= ,
則h′(x)= =
由h′(x)=0得x2﹣2x﹣1=0得x=1+ 或1﹣ (舍),
當(dāng)0<x<1+ 時(shí),h′(x)<0,函數(shù)h(x)遞減,
當(dāng)x>1+ 時(shí),h′(x)>0,函數(shù)h(x)遞增,
則當(dāng)x=1+ 時(shí),h(x)取得極小值,
此時(shí)h(1+ )= +1﹣ =2( ﹣1)+1﹣ =2 ﹣2+1﹣ =2 ﹣2+1﹣2(2﹣ )=4 ﹣5,
∴要使則b= +1﹣ 在(0,+∞)上有兩個(gè)不同的交點(diǎn),
則4 ﹣5<b<1,
即a的取值范圍是(4 ﹣5,1)
故選:D.

【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以連勝的不敗成績(jī)贏得第屆亞錦賽冠軍,同時(shí)拿到亞洲唯一張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價(jià)值球員),下表是易建聯(lián)在這場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).

比分

易建聯(lián)技術(shù)統(tǒng)計(jì)

投籃命中

罰球命中

全場(chǎng)得分

真實(shí)得分率

中國(guó)新加坡

中國(guó)韓國(guó)

中國(guó)約旦

中國(guó)哈薩克斯坦

中國(guó)黎巴嫩

中國(guó)卡塔爾

中國(guó)印度

中國(guó)伊朗

中國(guó)菲律賓

注:(1)表中表示出手次命中次;

(2)(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:

(1)從上述場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中超過(guò)的概率;

(2)我們把比分分差不超過(guò)分的比賽稱為“膠著比賽”.為了考驗(yàn)求易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中至少有一場(chǎng)超過(guò)的概率;

(3)用來(lái)表示易建聯(lián)某場(chǎng)的得分,用來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= + ,則下列命題中正確命題的序號(hào)是
①f(x)是偶函數(shù);
②f(x)的值域是[ ,2];
③當(dāng)x∈[0, ]時(shí),f(x)單調(diào)遞增;
④當(dāng)且僅當(dāng)x=2kπ± (k∈Z)時(shí),f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD,側(cè)面PAD是邊長(zhǎng)為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點(diǎn).
(Ⅰ) 求證:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一點(diǎn)Q,使得A,Q,M,D四點(diǎn)共面?若存在,指出點(diǎn)Q的位置并證明;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ) 求點(diǎn)D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某個(gè)四面體的三視圖,則該四面體的表面積為(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓O的直徑AB長(zhǎng)度為4,點(diǎn)D為線段AB上一點(diǎn),且 ,點(diǎn)C為圓O上一點(diǎn),且 .點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=BD.

(1)求證:CD⊥平面PAB;
(2)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間及極值;

(3)對(duì), 成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),傾斜角為.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,為側(cè)棱上的點(diǎn).

1)求證:

2)若平面,求二面角的大。

3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案