【題目】若等比數(shù)列{an}的前n項(xiàng)和Sn=2016n+t(t為常數(shù)),則a1的值為(
A.2013
B.2014
C.2015
D.2016

【答案】C
【解析】解:∵等比數(shù)列{an}的前n項(xiàng)和Sn=2016n+t(t為常數(shù)),
+t=2016+t,
a2=S2﹣S1=20162+t﹣(2016+t)=4062240,
a3=S3﹣S2=20163+t﹣(20162+t)=8189475840,
,
∴40622402=(2016+t)×8189475840,
解得t=﹣1,
∴a1=2016+(﹣1)=2015.
故選:C.
【考點(diǎn)精析】本題主要考查了等比數(shù)列的前n項(xiàng)和公式的相關(guān)知識(shí)點(diǎn),需要掌握前項(xiàng)和公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= + ,則下列命題中正確命題的序號(hào)是
①f(x)是偶函數(shù);
②f(x)的值域是[ ,2];
③當(dāng)x∈[0, ]時(shí),f(x)單調(diào)遞增;
④當(dāng)且僅當(dāng)x=2kπ± (k∈Z)時(shí),f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間及極值;

(3)對(duì), 成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角為.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (其中 ),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.

(1)求實(shí)數(shù), 的值;

(2)記函數(shù),是否存在最小的正常數(shù),使得當(dāng)時(shí),對(duì)于任意正實(shí)數(shù),不等式恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…,這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A.289
B.1024
C.1225
D.1378

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=n2﹣n,數(shù)列{bn}的前n項(xiàng)和Tn=4﹣bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn= anbn , 求數(shù)列{cn}的前n項(xiàng)和Rn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,為側(cè)棱上的點(diǎn).

1)求證:

2)若平面,求二面角的大小.

3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,直線 與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)過橢圓的左頂點(diǎn)作直線,與圓相交于兩點(diǎn), ,若是鈍角三角形,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案