【題目】下列說法不正確的是(

A.為真為真的充分不必要條件;

B.若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2

C.在區(qū)間上隨機取一個數(shù),則事件發(fā)生的概率為

D.設(shè)從總體中抽取的樣本為若記樣本橫、縱坐標(biāo)的平均數(shù)分別為,則回歸直線必過點

【答案】C

【解析】

A.為真”可知,為真命題,可得“為真”,反之不成立,即可判斷出正誤;B. 根據(jù)平均數(shù)公式即可判斷;.由題意得的范圍,再利用幾何概率計算公式即可判斷出正誤;.根據(jù)回歸直線的性質(zhì)即可判斷.

.為真”可知為真命題,可得“為真”反之“為真”可知真或真,但不一定為真,為真為真的充分不必要條件,故正確;

.由題意知,則,故正確;

.在區(qū)間上隨機取一個數(shù),由,

,解得,

事件發(fā)生的概率為: ,故不正確;

.根據(jù)回歸直線的性質(zhì)可知,回歸直線必過中心點,故正確.

故選:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝建國70周年,校園文化節(jié)舉行有獎答題活動,現(xiàn)有A,B兩種題型,從A類題型中抽取1道,從B類題型中抽取2道回答,答對3道題獲新華書店面值為15元的圖書代金券,答對2道題獲面值為10元的圖書代金券,答對1道題獲面值為5元的圖書代金券,沒有答對獲面值為1元的圖書代金券(作為鼓勵).甲同學(xué)參加此活動答對A類題的概率為,答對B類題的概率為.

(Ⅰ)求甲答對1道題的概率;

(Ⅱ)設(shè)甲參加一次活動所獲圖書代金券的面值為隨機變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角、、的對邊分別為,,,點的中點,已知,.

(1)求角的大小和的長;

(2)設(shè)的角平分線交,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足:①定義為;②.

1)求的解析式;

2)若;均有成立,求的取值范圍;

3)設(shè),試求方程的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線交橢圓、兩點,線段的中點為,直線是線段的垂直平分線,求證:直線過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)增區(qū)間;

2)令,且函數(shù)有三個彼此不相等的零點0,m,n,其中.

①若,求函數(shù)處的切線方程;

②若對,恒成立,求實數(shù)t的去取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項指標(biāo)檢測,這樣的抽樣是分層抽樣

B.某地氣象局預(yù)報:59日本地降水概率為,結(jié)果這天沒下雨,這表明天氣預(yù)報并不科學(xué)

C.在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好

D.在回歸直線方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量增加0.1個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角、的對邊分別為,,點的中點,已知,.

(1)求角的大小和的長;

(2)設(shè)的角平分線交,求的面積.

查看答案和解析>>

同步練習(xí)冊答案