函數(shù)y=
1
tan2x-2tanx+2
的值域是( 。
A、(-∞,1]
B、(0,1]
C、[1,+∞)
D、[
1
2
,1]
考點(diǎn):三角函數(shù)的最值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用配方法求tan2x-2tanx+2的取值范圍,進(jìn)而求函數(shù)y=
1
tan2x-2tanx+2
的值域.
解答: 解:∵tan2x-2tanx+2=(tanx-1)2+1≥1,
∴0<
1
tan2x-2tanx+2
≤1,
故選B.
點(diǎn)評:本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|
x+1
≥0}
,集合N={x|x-1<0},則M∩N=( 。
A、f(x)=ln|x-1|
B、{x|x<1}
C、{x|-1<x<1}
D、{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5>S6,則2a3-3a4的值( 。
A、小于0B、大于0
C、等于0D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1)、B(x2,y2)兩點(diǎn)間的“直角距離”為D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的直角距離為2的“格點(diǎn)”的坐標(biāo)(“格點(diǎn)”指的是橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)求到兩定點(diǎn)F1、F2的“直角距離”之和為定值2a(a>0)的動點(diǎn)的軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動點(diǎn)的軌跡;
(在以下三個條件中任選一個作答,多做不計(jì)分,其中選擇條件①,滿分3分;選擇條件②,滿分4分;選擇③滿分6分)
①F1(-1,0)、F2(1,0)、a=2;
②F1(-1,-1)、F2(1,1)、a=2③F1(-1,-1)、F2(1,1)、a=4;
(3)(理科)寫出同時滿足以下兩個條件的所有格點(diǎn)的坐標(biāo),并說明理由;
(文科)寫出同時滿足以下兩個條件的所有格點(diǎn)的坐標(biāo),不必說明理由;
①到A(-1,-1)、B(1,1)兩點(diǎn)的“直角距離”相等;
②到C(-2,-2)、D(2,2)兩點(diǎn)的“直角距離”之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1的離心率e=
5
-1
2
,A是左頂點(diǎn),F(xiàn)是右焦點(diǎn),B是短軸的一個端點(diǎn),則∠ABF=(  )
A、30°B、45°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的通項(xiàng)公式an=2-n,則數(shù)列{
an
2n-1
}的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
ex-a
x
,g(x)=alnx+a.
(1)當(dāng)a=0時,求f(x)在(1,f(x))處的切線方程.
(2)若x>1時,恒有f(x)≥g(x)成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是一個幾何體的直觀圖、正視圖、俯視圖和側(cè)視圖(尺寸如圖所示);
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證平面PBC⊥平面PABE;
(Ⅲ)若G為BC上的動點(diǎn),求證:AE⊥PG.

查看答案和解析>>

同步練習(xí)冊答案