設(shè)a>0,b>0,雙曲線
x2
a2
-
y2
b2
=1的離心率為e1,雙曲線
y2
b2
-
x2
a2
=1的離心率為e2,證明e12+e22=e12e22
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知條件推導(dǎo)出e1=
c
a
,e2=
c
b
,再分求出e12+e22和e12e22,由此能證明e12+e22=e12e22
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1的離心率為e1,
雙曲線
y2
b2
-
x2
a2
=1的離心率為e2,
e1=
c
a
e2=
c
b
,
∵e12+e22=
c2
a2
+
c2
b2
=
c2(a2+b2)
a2b2
=
c4
a2b2

e12e22=
c2
a2
c2
b2
=
c4
a2b2

∴e12+e22=e12e22
點評:本題考查雙曲線的離心率的求法及應(yīng)用,是基礎(chǔ)題,解題時要熟練掌握離心率的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,梯形ABCD中,E是DC延長線上一點,AE分別交BD于G,交BC于F.則下列結(jié)論:
EC
CD
=
EF
AF
;②
FG
AG
=
BG
GD
;③
AE
AG
=
BD
DG
;④
AF
CD
=
AE
DE
,其中正確的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知甲箱裝有a個白球2個黑球,乙箱裝有2個白球1個黑球,這些球除顏色外完全相同.現(xiàn)從甲箱中隨機摸兩球,乙箱中隨機模一球,若恰好摸出三個黑球的概率為
1
18

(Ⅰ)求a的值;
(Ⅱ)記甲箱摸出x個黑球,乙箱摸出y個黑球,ξ=|x-y|.求ξ的分布列及Eξ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)將圓心角為120°,面積為3π的扇形,作為圓錐的側(cè)面,求圓錐的表面積和體積;
(2)在△ABC中,滿足:
AB
AC
,|
AB
|=|
AC
|,求向量
AB
+2
AC
與向量2
AB
+
AC
的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù)
(1)求a的值
(2)討論關(guān)于x的方程
lnx
f(x)
=x2-2ex+m
的根的函數(shù)
(3)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x+y+z=0,求證:6(x3+y3+z32≤(x2+y2+z23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的方程x2+2ax-2a-2=0在x∈[0,1]中有解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在區(qū)間[0,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0有
f(a)+f(b)
a+b
>0
恒成立.
(1)判斷f(x)在[-1,1]上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若f(x)≤m2-2am+1,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且同時滿足以下三個條件:①f(1)=1;②對任意的x∈[0,1],都有f(x)≥0; ③當x≥0,y≥0,x+y≤1時總有f(x+y)≥f(x)+f(y).
(1)試求f(0)的值;
(2)求f(x)的最大值;
(3)證明:當x∈[
1
4
,1]
時,恒有2x≥f(x).

查看答案和解析>>

同步練習冊答案