【題目】已知函數(shù)f(x)=ex﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)
【答案】B
【解析】解:令g(x)=f(x)﹣1=ex﹣e﹣x+4sin3x, 則g(﹣x)=﹣g(x),即g(x)為奇函數(shù),
若f(1﹣a)+f(1﹣a2)>2成立,
即g(1﹣a)+g(1﹣a2)>0成立,
即g(1﹣a)>﹣g(1﹣a2)=g(a2﹣1),
∵g′(x)=ex+e﹣x+12sin2xcosx≥0在x∈(﹣1,1)時(shí)恒成立,
故g(x)在(﹣1,1)上為增函數(shù),
故﹣1<a2﹣1<1﹣a<1,
解得:a∈(0,1),
故選:B.
令g(x)=f(x)﹣1,則可得g(x)為奇函數(shù),且g(x)在(﹣1,1)上為增函數(shù),進(jìn)而可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為貫徹“激情工作,快樂數(shù)學(xué)”的理念,某學(xué)校在學(xué)習(xí)之余舉行趣味知識(shí)有獎(jiǎng)競(jìng)賽,比賽分初賽和決賽兩部分,為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰,已知選手甲答題的正確率為 .
(1)求選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù)ξ,試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=PA=4,A點(diǎn)在PD上的射影為G點(diǎn),E點(diǎn)在AB上,平面PCE⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求直線PD與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
(3)證明:(1﹣ )( )( ﹣ )…( ﹣ )<e3(3﹣n) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的值域;
(2)用五點(diǎn)法在圖中作出y=f(x)在閉區(qū)間[﹣ , ]上的簡(jiǎn)圖;
(3)說明f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變化得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點(diǎn)距地面2米,最高點(diǎn)距地面18米,P是摩天輪輪周上一定點(diǎn),從P在最低點(diǎn)時(shí)開始計(jì)時(shí),則14分鐘后P點(diǎn)距地面的高度是米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某正弦交流電的電壓v(單位V)隨時(shí)間t(單位:s)變化的函數(shù)關(guān)系是v=120 sin(100πt﹣ ),t∈[0,+∞).
(1)求該正弦交流電電壓v的周期、頻率、振幅;
(2)若加在霓虹燈管兩端電壓大于84V時(shí)燈管才發(fā)光,求在半個(gè)周期內(nèi)霓虹燈管點(diǎn)亮的時(shí)間?( 取 ≈1.4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí), 在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
(3)求函數(shù)y=f(x)在區(qū)間 上的最小值,并求使y=f(x)取得最小值時(shí)的x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com