【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若存在與函數(shù)的圖象都相切的直線(xiàn),求實(shí)數(shù)的取值范圍.
【答案】(1)當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)
【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo)研究單調(diào)性,進(jìn)而得到極值;(2)問(wèn)題轉(zhuǎn)化為有解求參數(shù)的范圍,對(duì)函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性,進(jìn)而得到函數(shù)的圖像,從而得到參數(shù)范圍.
解析:
(1)函數(shù)的定義域?yàn)?/span>
當(dāng)時(shí),,
所以
所以當(dāng)時(shí),,當(dāng)時(shí),,
所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,
所以當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;
(2)設(shè)函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線(xiàn)相同,
則
所以
所以,代入得:
設(shè),則
不妨設(shè)則當(dāng)時(shí),,當(dāng)時(shí),
所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
代入可得:
設(shè),則對(duì)恒成立,
所以在區(qū)間上單調(diào)遞增,又
所以當(dāng)時(shí),即當(dāng)時(shí),
又當(dāng)時(shí)
因此當(dāng)時(shí),函數(shù)必有零點(diǎn);即當(dāng)時(shí),必存在使得成立;
即存在使得函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線(xiàn)相同.
又由得:
所以單調(diào)遞減,因此
所以實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)(為參數(shù)).其中.
(1)試寫(xiě)出直線(xiàn)的直角坐標(biāo)方程及曲線(xiàn)的普通方程;
(2)若點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)到直線(xiàn)距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線(xiàn)的方程為.
(1)求曲線(xiàn)的普通方程及直線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)是曲線(xiàn)上的任意一點(diǎn),求點(diǎn)到直線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓:,圓:.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求,的極坐標(biāo)方程;
(2)設(shè)曲線(xiàn):(為參數(shù)且),與圓,分別交于,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,且,是棱上的動(dòng)點(diǎn),是的中點(diǎn).
(1)當(dāng)是中點(diǎn)時(shí),求證:平面;
(2)在棱上是否存在點(diǎn),使得平面與平面所成銳二面角為,若存在,求的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷(xiāo)售量 數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
由散點(diǎn)圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計(jì)算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)與的關(guān)系為.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(Ⅰ)若的圖像在處的切線(xiàn)過(guò)點(diǎn),求的值并討論在上的單調(diào)增區(qū)間;
(Ⅱ)定義:若直線(xiàn)與曲線(xiàn)、都相切,則我們稱(chēng)直線(xiàn)為曲線(xiàn)、的公切線(xiàn).若曲線(xiàn)與存在公切線(xiàn),試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書(shū)閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過(guò)0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門(mén)牽頭舉辦市讀書(shū)交流會(huì),從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com