【題目】判斷下列函數(shù)是否存在零點(diǎn),如果存在,請(qǐng)求出.
(1) ;
(2) ;
(3) ;
(4) .
【答案】
(1)解:令 ,解得 ,所以函數(shù) 的零點(diǎn)是
(2)解:令 ,由于 ,
所以方程 無實(shí)數(shù)根,所以函數(shù) 不存在零點(diǎn)
(3)解:令 ,解得 ,所以函數(shù) 的零點(diǎn)是 .
(4)解:令 ,解得 ,所以函數(shù) 的零點(diǎn)是 .
【解析】(1)根據(jù)題意利用零點(diǎn)的定義即可得出結(jié)論。(2)結(jié)合二次函數(shù)的性質(zhì)可求出判別式小于零所以方程 x2 + 2 x + 2 = 0 無實(shí)數(shù)根,所以函數(shù) f ( x ) = x2 + 2 x + 2 不存在零點(diǎn).(3)根據(jù)題意利用零點(diǎn)的定義即可求出結(jié)果。(4)根據(jù)題意利用零點(diǎn)的定義即可得出結(jié)果。
【考點(diǎn)精析】本題主要考查了函數(shù)的零點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n和為Sn , 且 是 與(an+1)2的等比中項(xiàng).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若 ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱A1B1C1﹣A2B2C2中,各側(cè)棱均垂直于底面,∠A1B1C1=90°,A1B1=B1C1=3,C1M=2B1N=2,則直線B1C1與平面A1MN所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資 萬元,此外每生產(chǎn) 件該產(chǎn)品還需要增加投資 萬元,年產(chǎn)量為 件.當(dāng) 時(shí),年銷售總收入為 萬元;當(dāng) 時(shí),年銷售總收入為 萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)為 萬元。
(1)求 (萬元)關(guān)于 (件)的函數(shù)關(guān)系式;
(2)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤(rùn)最大?并求出最大值.(年利潤(rùn)=年銷售總收入年總投資)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)的和a1=1, ,則數(shù)列 的前2017項(xiàng)和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù) 的圖象,可以將函數(shù)y=cos2x的圖象( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體AC1的棱長(zhǎng)為1,過點(diǎn)A作平面A1BD的垂線,垂足為點(diǎn)H,則以下命題中,錯(cuò)誤的命題是( )
A.點(diǎn)H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延長(zhǎng)線經(jīng)過點(diǎn)C1
D.直線AH和BB1所成角為45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.
(Ⅰ)求A∪B;
(Ⅱ)若C中恰有五個(gè)元素,求整數(shù)a的值;
(Ⅲ)若A∩C=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若點(diǎn)D在邊AC上,且AD=2DC,BD= ,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com