【題目】已知雙曲線C與雙曲線有相同的漸近線,且雙曲線C過(guò)點(diǎn)

(1)若雙曲線C的左、右焦點(diǎn)分別為,雙曲線C上有一點(diǎn)P,使得,求△的面積;

(2)過(guò)雙曲線C的右焦點(diǎn)作直線l與雙曲線右支交于AB兩點(diǎn),若△的周長(zhǎng)是,求直線l的方程.

【答案】1;(2.

【解析】

(1)先求出雙曲線方程,然后利用雙曲線的定義以及余弦定理可求得△的面積;

(2)通過(guò)△的周長(zhǎng)是以及雙曲線的定義可得,設(shè)AB,聯(lián)立:,利用韋達(dá)定理以及弦長(zhǎng)公式可得的值,進(jìn)而可得直線l的方程.

解:(1) 設(shè)雙曲線C,點(diǎn)代入得:

∴雙曲線C

在△PF1F2中,設(shè),

,

由②得:,

,

;

(2)

,

當(dāng)直線AB斜率不存在時(shí),,不符合題意(舍)

當(dāng)直線AB斜率存在時(shí),設(shè)AB,

聯(lián)立:,

,

解得:,此時(shí),

∴直線l方程:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列條件分別求出直線l的方程.

1)直線l經(jīng)過(guò)A4,1),且橫、縱截距相等;

2)直線l平行于直線3x+4y+170,并且與兩坐標(biāo)軸圍成的三角形的面積為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2,對(duì)角線ACBD相交于點(diǎn)O,動(dòng)點(diǎn)P滿足,若,其中mnR,則的最大值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn),若橢圓C的離心率為的周長(zhǎng)為8.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線lE相交于PQ兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),若對(duì)任意的,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當(dāng)年的捕魚(yú)期.某漁業(yè)捕撈隊(duì)對(duì)噸位為的20艘捕魚(yú)船一天的捕魚(yú)量進(jìn)行了統(tǒng)計(jì),如下表所示:

捕魚(yú)量(單位:噸)

頻數(shù)

2

7

7

3

1

根據(jù)氣象局統(tǒng)計(jì)近20年此地每年100天的捕魚(yú)期內(nèi)的晴好天氣情況如下表(捕魚(yú)期內(nèi)的每個(gè)晴好天氣漁船方可捕魚(yú),非晴好天氣不捕魚(yú)):

晴好天氣(單位:天)

頻數(shù)

2

7

6

3

2

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

(Ⅰ)估計(jì)漁業(yè)捕撈隊(duì)噸位為的漁船單次出海的捕魚(yú)量的平均數(shù);

(Ⅱ)已知當(dāng)?shù)佤~(yú)價(jià)為2萬(wàn)元/噸,此種捕魚(yú)船在捕魚(yú)期內(nèi)捕魚(yú)時(shí),每天成本為10萬(wàn)元/艘,若不捕魚(yú),每天成本為2萬(wàn)元/艘,若以(Ⅰ)中確定的作為上述噸位的捕魚(yú)船在晴好天氣捕魚(yú)時(shí)一天的捕魚(yú)量.

①請(qǐng)依據(jù)往年天氣統(tǒng)計(jì)數(shù)據(jù),試估計(jì)一艘此種捕魚(yú)船年利潤(rùn)不少于1600萬(wàn)元的概率;

②設(shè)今后3年中,此種捕魚(yú)船每年捕魚(yú)情況一樣,記一艘此種捕魚(yú)船年利潤(rùn)不少于1600萬(wàn)元的年數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面四邊形中,,中點(diǎn),,,,將沿對(duì)角線折起至,使平面,則四面體中,下列結(jié)論不正確的是(

A.平面

B.異面直線所成的角為

C.異面直線所成的角為

D.直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案