【題目】四棱錐中,平面,四邊形是矩形,且,,是線段上的動(dòng)點(diǎn),是線段的中點(diǎn).

1)求證:平面;

2)若直線與平面所成角為

①求線段的長(zhǎng);

②求二面角的余弦值.

【答案】1)證明見解析;(2)①2

【解析】

1)以點(diǎn)為原點(diǎn),軸,軸, ,建立空間直角坐標(biāo)系,利用數(shù)量積證出,再利用線面垂直的判定定理即可證出.

2)①求出平面的一個(gè)法向量,利用,即可求線段的長(zhǎng);②求出平面的一個(gè)法向量,再根據(jù)為平面的一個(gè)法向量,利用空間向量的數(shù)量積即可求解.

(1)依題意,以點(diǎn)為原點(diǎn),軸,軸,

建立空間直角坐標(biāo)系(如圖),

可得,,

,,.

,,

,,.

,.

所以平面.

2)①設(shè)為平面的法向量,

,即,

不妨令,可得為平面的一個(gè)法向量,

于是有.

所以,得(舍).

,,線段的長(zhǎng)為;.

②設(shè)為平面的法向量,,

,

不妨令,可得為平面的一個(gè)法向量,.

為平面的一個(gè)法向量,.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1,m+1m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;

(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和滿足

?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說明理由;

(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求的單調(diào)區(qū)間;

2)若處取得極值,直線的圖象有三個(gè)不同的交點(diǎn),求的取值范圍.的極大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三分損益法是古代中國(guó)發(fā)明制定音律時(shí)所用的方法,其基本原理是:以一根確定長(zhǎng)度的琴弦為基準(zhǔn),取此琴?gòu)?qiáng)長(zhǎng)度的得到第二根琴弦,第二根琴弦長(zhǎng)度的為第三根琴弦,第三根琴弦長(zhǎng)度的為第四根琴弦.第四根琴弦長(zhǎng)度的為第五根琴弦.琴弦越短,發(fā)出的聲音音調(diào)越高,這五根琴弦發(fā)出的聲音按音調(diào)由低到高分別稱為官、商、角(jué)、微(zhǐ)、羽,則角"和對(duì)應(yīng)的琴弦長(zhǎng)度之比為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明在某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前54單沒有獎(jiǎng)勵(lì),超過54單的部分每單獎(jiǎng)勵(lì)20元.

(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在時(shí),日平均派送量為單.若將頻率視為概率,回答下列問題:

①估計(jì)這100天中的派送量指標(biāo)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表) ;

根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列及數(shù)學(xué)期望. 請(qǐng)利用數(shù)學(xué)期望幫助小明分析他選擇哪種薪酬方案比較合適?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,異面直線分別在上底面和下底面上運(yùn)動(dòng),且,現(xiàn)有以下結(jié)論:

①當(dāng)所成角為60°時(shí),所成角為60°;

②當(dāng)所成角為60°時(shí),與側(cè)面所成角為30°

所成角的最小值為45°

所成角的最大值為90°

其中正確的是(

A.①③B.②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從秦朝統(tǒng)一全國(guó)幣制到清朝末年,圓形方孔銅錢(簡(jiǎn)稱“孔方兄”)是我國(guó)使用時(shí)間長(zhǎng)達(dá)兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個(gè)字“同治重寶”.某模具廠計(jì)劃仿制這樣的銅錢作為紀(jì)念品,其小圓內(nèi)部圖紙?jiān)O(shè)計(jì)如圖2所示,小圓直徑1厘米,內(nèi)嵌一個(gè)大正方形孔,四周是四個(gè)全等的小正方形(邊長(zhǎng)比孔的邊長(zhǎng)。,每個(gè)正方形有兩個(gè)頂點(diǎn)在圓周上,另兩個(gè)頂點(diǎn)在孔邊上,四個(gè)小正方形內(nèi)用于刻銅錢上的字.設(shè),五個(gè)正方形的面積和為S

1)求面積S關(guān)于的函數(shù)表達(dá)式,并求定義域;

2)求面積S最小值及此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左,右焦點(diǎn)分別為左,右頂點(diǎn)分別為,,點(diǎn),,為橢圓上位于軸上方的兩點(diǎn),且,記直線,的斜率分別為,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績(jī)將由語(yǔ)文數(shù)學(xué)英語(yǔ)3門統(tǒng)一高考成績(jī)和學(xué)生從思想政治、歷史、地理、物理、化學(xué)、生物6門等級(jí)性考試科目中自主選擇3個(gè),按獲得該次考試有效成績(jī)的考生(缺考考生或未得分的考生除外)總?cè)藬?shù)的相應(yīng)比例的基礎(chǔ)上劃分等級(jí),位次由高到低分為A、B、C、D、E五等21級(jí),該省的某市為了解本市萬名學(xué)生的某次選考化學(xué)成績(jī)水平,統(tǒng)計(jì)在全市范圍內(nèi)選考化學(xué)的原始成績(jī),發(fā)現(xiàn)其成績(jī)服從正態(tài)分布 ,現(xiàn)從某校隨機(jī)抽取了名學(xué)生,將所得成績(jī)整理后,繪制出如圖所示的頻率分布直方圖.

(1)估算該校名學(xué)生成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)現(xiàn)從該校名考生成績(jī)?cè)?/span>的學(xué)生中隨機(jī)抽取兩人,該兩人成績(jī)排名(從高到低)在全市前名的人數(shù)記為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.參考數(shù)據(jù):若,則,,.

查看答案和解析>>

同步練習(xí)冊(cè)答案