【題目】已知橢圓的短軸長(zhǎng)為,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左,右焦點(diǎn)分別為左,右頂點(diǎn)分別為,點(diǎn),為橢圓上位于軸上方的兩點(diǎn),且,記直線的斜率分別為,,若,求直線的方程.

【答案】(1)(2)

【解析】

1)由題意可得:2b4,a2b2+c2.聯(lián)立解出即可得出橢圓C的標(biāo)準(zhǔn)方程.(2A(﹣3,0),B3,0),F1(﹣1,0),F21,0),設(shè)F1M的方程為:xmy1,M),(0),直線F1M與橢圓的另一個(gè)交點(diǎn)為M′().由根據(jù)對(duì)稱(chēng)性可得:.直線方程與橢圓方程聯(lián)立化為:(8m2+9y216my640,根據(jù)根與系數(shù)的關(guān)系及其,得0,聯(lián)立解得m

(1)由題意,得,.

,∴,,.

∴橢圓C的標(biāo)準(zhǔn)方程為

(2)由(1),可知,,.

據(jù)題意,直線的方程為

記直線與橢圓的另一交點(diǎn)為,設(shè),.

,根據(jù)對(duì)稱(chēng)性,得.

聯(lián)立

消去,得,其判別式,

,.①

,得,即.②

由①②,解得

,∴.

.∴.

∴直線的方程為,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù)上單調(diào)遞減,且,,,則的值( 。

A. 恒為正B. 恒為負(fù)C. 恒為0D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若),,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy22pxp0)與圓無(wú)公共點(diǎn),過(guò)拋物線C上一點(diǎn)M作圓D的兩條切線,切點(diǎn)分別為EF,當(dāng)點(diǎn)M在拋物線C上運(yùn)動(dòng)時(shí),直線EF都不通過(guò)的點(diǎn)構(gòu)成一個(gè)區(qū)域,求這個(gè)區(qū)域的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓稅收政策更好的為社會(huì)發(fā)展服務(wù),國(guó)家在修訂《中華人民共和國(guó)個(gè)人所得稅法》之后,發(fā)布了《個(gè)人所得稅專(zhuān)項(xiàng)附加扣除暫行辦法》,明確“專(zhuān)項(xiàng)附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈(zèng)養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對(duì)新個(gè)稅方案的滿(mǎn)意程度與年齡的關(guān)系,通過(guò)問(wèn)卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:

40歲及以下

40歲以上

合計(jì)

基本滿(mǎn)意

15

30

45

很滿(mǎn)意

25

10

35

合計(jì)

40

40

80

(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿(mǎn)意程度與年齡有關(guān)?

(2)為了幫助年齡在40歲以下的未購(gòu)房的8名員工解決實(shí)際困難,該企業(yè)擬員工貢獻(xiàn)積分(單位:分)給予相應(yīng)的住房補(bǔ)貼(單位:元),現(xiàn)有兩種補(bǔ)貼方案,方案甲:;方案乙:.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補(bǔ)貼的員工記為“類(lèi)員工”.為了解員工對(duì)補(bǔ)貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“類(lèi)員工”的概率。

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究男、女生的身高差異,現(xiàn)隨機(jī)從高二某班選出男生、女生各10人,并測(cè)量他們的身高,測(cè)量結(jié)果如下(單位:厘米):

男:164 178 174 185 170 158 163 165 161 170

女:165 168 156 170 163 162 158 153 169 172

(1)根據(jù)測(cè)量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.

(2)請(qǐng)根據(jù)測(cè)量結(jié)果得到20名學(xué)生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認(rèn)為男、女生身高有差異?

人數(shù)

男生

女生

身高

身高

參照公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設(shè)可以用測(cè)量結(jié)果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)若點(diǎn)、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCDA1B1C1D1中,ABAD1,AA12,點(diǎn)PDD1的中點(diǎn),點(diǎn)MBB1的中點(diǎn).

1)求證:PB1⊥平面PAC;

2)求直線CM與平面PAC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案