a
1
(2x+
1
x
)dx=3+ln2,且a>1,則a 的值為( 。
A、6B、4C、3D、2
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)定積分的計算法則計算即可.
解答: 解:
a
1
(2x+
1
x
)dx=(x2+lnx)|
 
a
1
=a2+lna-1=3+ln2,
解得a=2.
故選:D
點(diǎn)評:本題考查了定積分的計算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤x
x+y≥2
2x+y≥6
,則z=3x+2y的取值范圍為( 。
A、(-∞,10]
B、[8,+∞)
C、[5,10]
D、[8,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是△ABC的重心,a,b,c分別為角A,B,C的對邊,已知b=2,c=
7
,則
BC
AO
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某物流公司送貨員從公司A處準(zhǔn)備開車送貨到某單位B處,若該地各路段發(fā)生堵車事件都是獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖所示(例如A→C→D算作兩個路段:路段AC發(fā)生堵車事件的概率為
1
6
,路段CD發(fā)生堵車事件的概率為
1
10
…)
(1)請你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最;
(2)若記路線A→C→F→B中遇到堵車的次數(shù)為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,a2+a6=6,Sn 為其前n 項(xiàng)和,S5=
35
3

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,若Sn<m 對一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(cosα,sinα),
b
=(cosβ,sinβ)

(1)求證:(
a
+
b
)⊥(
a
-
b
)
;
(2)當(dāng)β=
3
,α∈[0,π]時,向量
3
a
+
b
a
-
3
b
的模相等,求角α;
(3)向量
a
,
b
滿足|k
a
+
b
|=
3
|
a
-k
b
|
,k>0,將
a
b
的數(shù)量積表示為關(guān)于k的函數(shù)f(k),求f(k)的最小值及取得最小值時
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:sinαcosβ+cosαsinβ=sin2α+sin2β,求證:α+β=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)是f′(x)=2x-1,且f(1)=2,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)(2a,a-1)在圓x2+(y-1)2=5的內(nèi)部,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案