【題目】在平面直角坐標系xOy中,橢圓C的中心在坐標原點O,其右焦點為,且點在橢圓C上.

求橢圓C的方程;

設橢圓的左、右頂點分別為A、B,M是橢圓上異于AB的任意一點,直線MF交橢圓C于另一點N,直線MB交直線Q點,求證:A,N,Q三點在同一條直線上.

【答案】1 2)見解析

【解析】

1)設橢圓的方程為,由題意可得,解方程組即可.

2)設,,直線MN的方程為,由方程組,消去整理得,根據(jù)韋達定理求出點的坐標,根據(jù)向量即可求出,且向量有公共點,即可證明.

(1)不妨設橢圓的方程為,.

由題意可得,解得,,

故橢圓的方程.

(1)設,,直線的方程為,

由方程組,消去x整理得

,,

直線的方程可表示為,

將此方程與直線成立,可求得點的坐標為,

,

,

向量有公共點,

,三點在同一條直線上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下表列出了1058歲兒童的體重x(單位kg)(這是容易測得的)和體積y(單位dm3)(這是難以測得的),繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合yx的關系:

體重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

體積y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y關于x的線性回歸方程(系數(shù)精確到0.01);

(2)5歲兒童的體重為13.00kg,估測此兒童的體積.

附注:參考數(shù)據(jù):,,,

,137×14=1918.00

參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為,左、右頂點分別為AB,點M是橢圓C上異于A,B的一點,直線AMy軸交于點P

(Ⅰ)若點P在橢圓C的內部,求直線AM的斜率的取值范圍;

(Ⅱ)設橢圓C的右焦點為F,點Qy軸上,且∠PFQ=90°,求證:AQBM

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,為棱的中點,.

(1)證明:平面;

(2)設二面角的正切值為,,,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向左平移個單位,縱坐標擴大到原來的2倍得到函數(shù)的圖象,則下列關于函數(shù)的命題中正確的是(

A.函數(shù)是奇函數(shù)B.的圖象關于直線對稱

C.上是增函數(shù)D.時,函數(shù)的值域是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到直線的距離比到定點的距離大1.

(1)求動點的軌跡的方程.

(2)若為直線上一動點,過點作曲線的兩條切線,切點為,的中點.

①求證:軸;

②直線是否恒過一定點?若是,求出這個定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,過對角線作平面交棱于點E,交棱于點F,則:

①平面分正方體所得兩部分的體積相等;

②四邊形一定是平行四邊形;

③平面與平面不可能垂直;

④四邊形的面積有最大值.

其中所有正確結論的序號為(

A.①④B.②③C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A(0,3),直線ly2x4,設圓C的半徑為1,圓心在l上.若圓C上存在點M,使MA2MO,則圓心C的橫坐標a的取值范圍是(

A.B.[0,1]

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a為常數(shù))有兩個極值點.

(1)求實數(shù)a的取值范圍;

(2)設f(x)的兩個極值點分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

同步練習冊答案