如圖是正方體的平面展開圖,在這個正方體中,以下四個命題:
(1)BM與ED平行;
(2)CN與BE是異面直線;
(3)CN與BM成60°;
(4)CN與AF垂直.
其中正確的有
 
考點:異面直線的判定
專題:空間位置關(guān)系與距離
分析:由展開圖復原正方體如圖所示.利用正方體的性質(zhì)即可判斷出.
解答: 解:由展開圖復原正方體如圖所示.
由正方體可得:BM與ED是異面直線,CN∥BE,CN與BM是異面直線,CN∥BE可得CN⊥AF.
綜上可得:只有(3)(4)正確.
故答案為:(3)(4).
點評:本題考查了正方體的表面對角線的位置關(guān)系,平面展開圖復原幾何體是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)點P(x,y),其中x,y∈N,則滿足x+y≤3的點P的個數(shù)為(  )
A、10B、9C、3D、無數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,直線y=x+
2
與以原點為圓心、橢圓C的短半軸長為半徑的圓O相切.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意點,直線DP交x軸于點N,直線AD交BP于點M,設(shè)BP的斜率為k,MN的斜率為m,求證:2m-k為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(a+i)(2+i)是純虛數(shù)(i是虛數(shù)單位),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[1,5]和[2,4]分別取一個數(shù),記為a,b,則方程
x2
a2
+
y2
b2
=1
表示焦點在x軸上且離心率小于
3
2
的橢圓的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[0,1]上隨機地任取兩個數(shù)a,b,則滿足a2+b2
1
4
的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)f(x)=sinxcosx-cos2x,給出下列命題:
①f(x)的最小正周期為2π;
②f(x)在區(qū)間(0,
π
8
)
上為增函數(shù);
③直線x=
8
是函數(shù)f(x)圖象的一條對稱軸;
④函數(shù)f(x)的圖象可由函數(shù)f(x)=
2
2
sin2x
的圖象向右平移
π
8
個單位得到;
⑤對任意x∈R,恒有f(
π
4
+x)+f(-x)=-1

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[0,4]內(nèi)隨機取兩個實數(shù)a,b,則使得方程x2+ax+b2=0有實根的概率是( 。
A、
1
4
B、
1
3
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+ax+1(a∈R).
(Ⅰ)若a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=2x-1,若存在x1∈(0,+∞),對于任意x2∈[0,1],使f(x1)≥g(x2),求a的取值范圍.

查看答案和解析>>

同步練習冊答案