【題目】已知集合A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}.
(1)若“x∈A”是“x∈B”的必要不充分條件,求實數(shù)a的取值范圍;
(2)對任意x∈B,不等式x2-mx+4≥0都成立,求實數(shù)m的取值范圍.
【答案】(1)[3,+∞);(2)(-∞,4].
【解析】
(1)根據(jù)“x∈A”是“x∈B”的必要不充分條件,即可得出a滿足的條件.
(2)要使任意x∈B,不等式x2-mx+4≥0都成立,又B={x|x2-5x+4≤0}={x|1≤x≤4}.由x2-mx+4≥0,得,只要,即可得出.
解:(1)A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}={x|1≤x≤4}.
因為“x∈A”是“x∈B”的必要不充分條件,即BA,
所以,或,
所以,,或,
所以a≥3.
所以,實數(shù)a的取值范圍是[3,+∞).
(2)要使任意x∈B,不等式x2-mx+4≥0都成立,又B={x|x2-5x+4≤0}={x|1≤x≤4}.
由x2-mx+4≥0,得,
則只要,又,當且僅當,即x=2時等號成立.
實數(shù)m的取值范圍(-∞,4].
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時,恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近10年投入的年研發(fā)費用與年銷售量 的數(shù)據(jù),得到散點圖如圖所示:
(1)利用散點圖判斷,和(其中為大于0的常數(shù))哪一個更適合作為年研發(fā)費用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由).
(2)對數(shù)據(jù)作出如下處理:令,,得到相關統(tǒng)計量的值如下表:
根據(jù)(1)的判斷結果及表中數(shù)據(jù),求關于的回歸方程;
(3)已知企業(yè)年利潤(單位:千萬元)與的關系為(其中),根據(jù)(2)的結果,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?
附:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線的左焦點為,點A的坐標為(0,1),點P為雙曲線右支上的動點,且△APF1周長的最小值為6,則雙曲線的離心率為( )
A.B.C.2D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C上橫坐標為3的點M到焦點F的距離為4.
(1)求拋物線C的方程;
(2)過拋物線C的焦點F且斜率為1的直線l交拋物線C于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾個命題中,假命題是( )
A. “若,則”的否命題
B. “,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定
C. “是函數(shù)的一個周期”或“是函數(shù)的一個周期”
D. “”是“”的必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于曲線,有如下結論:
①曲線關于原點對稱;
②曲線關于坐標軸對稱;
③曲線是封閉圖形;
④曲線不是封閉圖形,且它與圓無公共點;
⑤曲線與曲線有個交點,這點構成正方形.其中有正確結論的序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),如果存在區(qū)間,其中,同時滿足:
①在內(nèi)是單調(diào)函數(shù):②當定義域為時,的值域為,則稱函數(shù)是區(qū)間上的“保值函數(shù)”,區(qū)間稱為“保值函數(shù)”.
(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;
(2)若函數(shù)()是區(qū)間上的“保值函數(shù)”,求的取值范圍;
(3)對(2)中函數(shù),若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com