設(shè)集合A={x|-3≤2x-1≤3},集合B為函數(shù)y=lg(x-1)-2sinx的定義域,則A∩B=( 。
A、(1,2)
B、[1,2]
C、[1,2)
D、(1,2]
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出A中不等式的解集確定出A,求出B中函數(shù)的定義域確定出B,找出A與B的交集即可.
解答: 解:由A中不等式解得:-1≤x≤2,即A=[-1,2];
由B中函數(shù)得:x-1>0,
解得:x>1,即B=(1,+∞),
則A∩B=(1,2].
故選:D.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐底面邊長(zhǎng)為4cm,側(cè)面和底面成60°的二面角,則這個(gè)棱錐的側(cè)面積是
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓
x2
a2
+
y2
b2
=1(a>b>0)中,左焦點(diǎn)為F,右頂點(diǎn)為A,短軸上方端點(diǎn)為B,若∠ABF=90°,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,如果a1=1,且an+1=
1
2
an,則a3等于( 。
A、4
B、
3
2
C、2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
2
1+i
(i為虛數(shù)單位),則z的虛部為(  )
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
5
cos(ωx+φ),g(x)=
5
sin(ωx+φ)對(duì)任意x∈R都有f(
π
3
-x)=f(
π
3
+x),則g(
π
3
)的值為( 。
A、
5
B、-
5
C、±
5
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=
9-x2
},B={y|y=2x,x>0},則A∪B=( 。
A、{x|x>1}
B、{x|1<x≤3}
C、{x|x≥-3}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知P是橢圓
x2
4
+y2=1上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的左右焦點(diǎn),∠F1PF2=90°,則△F1PF2的面積( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的對(duì)角線AC與BD相交于E點(diǎn),將△ABC沿對(duì)角線AC折起,使得平面ABC⊥平面ADC(如圖),則下列命題中正確的為( 。
A、直線AB⊥直線CD,且直線AC⊥直線BD
B、直線AB⊥平面BCD,且直線AC⊥平面BDE
C、平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D、平面ABD⊥平面BCD,且平面ACD⊥平面BDE

查看答案和解析>>

同步練習(xí)冊(cè)答案