【題目】已知橢圓與軸正半軸交于點(diǎn),與軸交于、兩點(diǎn).
(1)求過、、三點(diǎn)的圓的方程;
(2)若為坐標(biāo)原點(diǎn),直線與橢圓和(1)中的圓分別相切于點(diǎn)和點(diǎn)(、不重合),求直線與直線的斜率之積.
【答案】(1);(2).
【解析】
(1)求出、、三點(diǎn)的坐標(biāo),求得圓心的坐標(biāo),進(jìn)而求出圓的半徑,由此可求得圓的方程;
(2)設(shè)直線的方程為(存在且),將直線的方程與橢圓的方程聯(lián)立,由可得,由直線與圓相切可得出,進(jìn)而可得出,求出直線與直線的斜率,進(jìn)而可求得結(jié)果.
(1)由題意可得、、,則圓心在軸上,設(shè)點(diǎn),
由,可得,解得,圓的半徑為.
因此,圓E的方程為;
(2)由題意:可設(shè)的方程為(存在且),
與橢圓聯(lián)立消去可得,
由直線與橢圓相切,可設(shè)切點(diǎn)為,由,
可得,解得,,
由圓與直線相切,即,可得.
因此由,可得,
直線的斜率為,直線的斜率,
綜上:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,6l,95,則該數(shù)列的第8項(xiàng)為( )
A.99B.131C.139D.141
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C :與圓相交于M,N,P,Q四點(diǎn),四邊形MNPQ為正方形,△PF1F2的周長為
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C相交于A、B兩點(diǎn)若直線AD與直線BD的斜率之積為,證明:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”,將上述問題的所有正整數(shù)答案從小到大組成一個(gè)數(shù)列,則______;______.(注:三三數(shù)之余二是指此數(shù)被3除余2,例如“5”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列三個(gè)結(jié)論:
①當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為;
②若函數(shù)無最小值,則的取值范圍為;
③若且,則,使得函數(shù).恰有3個(gè)零點(diǎn),,,且.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始,高考采用取消文理分科,實(shí)行“”的模式,其中的“1”表示每位學(xué)生必須從物理、歷史中選擇一個(gè)科目且只能選擇一個(gè)科目.某校高一年級(jí)有2000名學(xué)生(其中女生900人).該校為了解高一年級(jí)學(xué)生對(duì)“1”的選課情況,采用分層抽樣的方法抽取了200名學(xué)生進(jìn)行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | ________ | 50 | |
女生 | 30 | ________ | |
總計(jì) | ________ | ________ | 200 |
(1)求,的值;
(2)請(qǐng)你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)為,,且橢圓上一點(diǎn),滿足,直線與橢圓交于、兩點(diǎn),與軸、軸分別交于點(diǎn)、,且.
(1)求橢圓的方程;
(2)若,且,求的值;
(3)當(dāng)△面積取得最大值,且點(diǎn)在橢圓上時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com