已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(1) 3.(2) .(3) .
【解析】
試題分析:(1) 當(dāng)時(shí),
當(dāng)時(shí) 函數(shù)取最小值3.
(2) 設(shè)
依題意 得 .
(3) 當(dāng)時(shí) 恒成立
當(dāng)時(shí) 恒成立
設(shè) 則
(1)當(dāng)時(shí), 在單調(diào)遞增,
(2)當(dāng)時(shí),設(shè)
有兩個(gè)根,一個(gè)根大于1,一個(gè)根小于1.
不妨設(shè)
當(dāng)時(shí) 即 在單調(diào)遞減
不滿足已知條件.
綜上:的取值范圍為.
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):此類(lèi)問(wèn)題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12高☆考♂資♀源*網(wǎng)分)
已知函數(shù)。
(1) 當(dāng)m=0時(shí),求在區(qū)間上的取值范圍;
(2) 當(dāng)時(shí),,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省福州市八縣(市)協(xié)作校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題
(本題14分)已知函數(shù),。
(1)當(dāng)t=8時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對(duì)任意正實(shí)數(shù)都成立;
(3)若存在正實(shí)數(shù),使得對(duì)任意的正實(shí)數(shù)都成立,請(qǐng)直接寫(xiě)出滿足這樣條件的一個(gè)的值(不必給出求解過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(江西卷)解析版(理) 題型:解答題
已知函數(shù)。
(1) 當(dāng)m=0時(shí),求在區(qū)間上的取值范圍; (2) 當(dāng)時(shí),,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(1)當(dāng)=1,求函數(shù)單調(diào)遞增區(qū)間;
(2)當(dāng)<0且∈[0,]時(shí),函數(shù)的值域?yàn)閇3,4],求+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),
(1)當(dāng)=1時(shí),曲線與直線=1交于點(diǎn)P,求曲線在點(diǎn)P處的切線方程;
(2)當(dāng)<0,求函數(shù)單調(diào)遞增區(qū)間:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com