已知函數(shù).

(1)當(dāng)時(shí),求的最小值;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

 

【答案】

(1) 3.(2) .(3) .

【解析】

試題分析:(1) 當(dāng)時(shí),   

當(dāng)時(shí) 函數(shù)取最小值3.

(2)  設(shè)

依題意  得 .

(3) 當(dāng)時(shí) 恒成立

 當(dāng)時(shí)  恒成立

設(shè) 則

(1)當(dāng)時(shí), 單調(diào)遞增,

(2)當(dāng)時(shí),設(shè)

  有兩個(gè)根,一個(gè)根大于1,一個(gè)根小于1.

不妨設(shè)

當(dāng)時(shí)  即 單調(diào)遞減 

不滿足已知條件.

綜上:的取值范圍為.

考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):此類(lèi)問(wèn)題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識(shí)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12高☆考♂資♀源*網(wǎng)分)

已知函數(shù)。

(1) 當(dāng)m=0時(shí),求在區(qū)間上的取值范圍;

(2) 當(dāng)時(shí),,求m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省福州市八縣(市)協(xié)作校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本題14分)已知函數(shù),。

(1)當(dāng)t=8時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)求證:當(dāng)時(shí),對(duì)任意正實(shí)數(shù)都成立;

(3)若存在正實(shí)數(shù),使得對(duì)任意的正實(shí)數(shù)都成立,請(qǐng)直接寫(xiě)出滿足這樣條件的一個(gè)的值(不必給出求解過(guò)程)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(江西卷)解析版(理) 題型:解答題

 

已知函數(shù)。

(1) 當(dāng)m=0時(shí),求在區(qū)間上的取值范圍; (2) 當(dāng)時(shí),,求m的值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(1)當(dāng)=1,求函數(shù)單調(diào)遞增區(qū)間;

(2)當(dāng)<0且∈[0,]時(shí),函數(shù)的值域?yàn)閇3,4],求+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),

(1)當(dāng)=1時(shí),曲線與直線=1交于點(diǎn)P,求曲線在點(diǎn)P處的切線方程;

(2)當(dāng)<0,求函數(shù)單調(diào)遞增區(qū)間:

查看答案和解析>>

同步練習(xí)冊(cè)答案