(本小題滿分12高☆考♂資♀源*網(wǎng)分)

已知函數(shù)。

(1) 當(dāng)m=0時(shí),求在區(qū)間上的取值范圍;

(2) 當(dāng)時(shí),,求m的值。

【解析】考查三角函數(shù)的化簡、三角函數(shù)的圖像和性質(zhì)、已知三角函數(shù)值求值問題。依托三角函數(shù)化簡,考查函數(shù)值域,作為基本的知識交匯問題,考查基本三角函數(shù)變換,屬于中等題.

解:(1)當(dāng)m=0時(shí),

,由已知,得

從而得:的值域?yàn)?sub>

(2)

化簡得:

當(dāng),得:,,

代入上式,m=-2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)如下圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20 m,要求通行車輛限高5 m,隧道全長2.5 km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓.

(1)若最大拱高h為6 m,則隧道設(shè)計(jì)的拱寬l是多少?

(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計(jì)拱高h和拱寬l?

(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高.)

(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

△ABC中,已知三個(gè)頂點(diǎn)的坐標(biāo)分別是A(,0),B(6,0),C(6,5),

(1)求AC邊上的高線BH所在的直線方程;

(2)求的角平分線所在直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省高三高考壓軸理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖,是底部不可到達(dá)的一個(gè)塔型建筑物,為塔的最高點(diǎn).現(xiàn)需在對岸測出塔高,甲、乙兩同學(xué)各提出了一種測量方法,甲同學(xué)的方法是:選與塔底在同一水平面內(nèi)的一條基線,使三點(diǎn)不在同一條直線上,測出的大。ǚ謩e用表示測得的數(shù)據(jù))以及間的距離(用表示測得的數(shù)據(jù)),另外需在點(diǎn)測得塔頂的仰角(用表示測量的數(shù)據(jù)),就可以求得塔高.乙同學(xué)的方法是:選一條水平基線,使三點(diǎn)在同一條直線上.在處分別測得塔頂的仰角(分別用表示測得的數(shù)據(jù))以及間的距離(用表示測得的數(shù)據(jù)),就可以求得塔高

請從甲或乙的想法中選出一種測量方法,寫出你的選擇并按如下要求完成測量計(jì)算:①畫出測量示意圖;②用所敘述的相應(yīng)字母表示測量數(shù)據(jù),畫圖時(shí)按順時(shí)針方向標(biāo)注,按從左到右的方向標(biāo)注;③求塔高

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三12月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

某單位建造一間地面面積為12 平方米的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度x不得超過米 ,房屋正面的造價(jià)為400元/平方米,房屋側(cè)面的造價(jià)為150元/平方米,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3米,且不計(jì)房屋背面的費(fèi)用.(1)把房屋總造價(jià)y表示成x的函數(shù),并寫出該函數(shù)的定義域;(2)當(dāng)側(cè)面的長度為多少時(shí),總造價(jià)最低?最低造價(jià)是多少?

 

 

 

查看答案和解析>>

同步練習(xí)冊答案