【題目】函數(shù)y= 的定義域為 , 值域為 .
【答案】(1,2)∪(2,+∞);(﹣∞,0)∪(0,+∞)
【解析】解:函數(shù)y= ,
其定義域必須滿足: ,
解得:x>1且x≠2.
∴函數(shù)y= 的定義域為(1,2)∪(2,+∞).
又∵ln(x﹣1)值域為(﹣∞,0)∪(0,+∞),
∴y= 值域為(﹣∞,0)∪(0,+∞),
所以答案是:(1,2)∪(2,+∞);(﹣∞,0)∪(0,+∞).
【考點精析】通過靈活運用函數(shù)的定義域及其求法和函數(shù)的值域,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質是相同的即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量, ,設函數(shù),且的圖象過點和點.
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移()個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①“三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球”是必然事件
②“當x為某一實數(shù)時可使”是不可能事件
③“明天順德要下雨”是必然事件
④“從100個燈泡中取出5個,5個都是次品”是隨機事件.
其中正確命題的個數(shù)是 ( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線的準線為,取過焦點且平行于軸的直線與拋物線交于不同的兩點,過作圓心為的圓,使拋物線上其余點均在圓外,且.
(Ⅰ)求拋物線和圓的方程;
(Ⅱ)過點作直線與拋物線和圓依次交于,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場計劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進場試銷10天,兩個廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計,兩個廠家10天的試銷情況莖葉圖如下:
(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(。┯浺覐S家的日返利額為(單位:元),求的分布列和數(shù)學期望;
(ⅱ)商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學的統(tǒng)計學知識為商場做出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣2﹣x .
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)為(﹣∞,+∞)上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結論,其中正確的個數(shù)為( 。
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,平均數(shù)與方差均沒有變化;
②在線性回歸分析中,相關系數(shù)r越小,表明兩個變量相關性越弱;
③某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為15人.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2﹣mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(1)若0<m≤4,求函數(shù)g(m)的解析式;
(2)定義在(﹣∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當x>0時,h(x)=g(x),若h(t)>h(4),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中, , ,四邊形為矩形,且平面, .
(1)求證: 平面;
(2)點在線段(含端點)上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com