【題目】如圖,拋物線的準(zhǔn)線為,取過焦點(diǎn)且平行于軸的直線與拋物線交于不同的兩點(diǎn),過作圓心為的圓,使拋物線上其余點(diǎn)均在圓外,且.
(Ⅰ)求拋物線和圓的方程;
(Ⅱ)過點(diǎn)作直線與拋物線和圓依次交于,求的最小值.
【答案】(1) ,;(2)16.
【解析】試題分析:(1)通過平面幾何性質(zhì)及圓錐曲線定義求軌跡方程;(2)借助勾股定理及弦長公式表示目標(biāo),然后利用二次函數(shù)求最值.
試題解析:
(Ⅰ) 因?yàn)閽佄锞的準(zhǔn)線為;
所以解得,所以拋物線的方程為.
當(dāng)時(shí),由得: ,不妨設(shè)在左側(cè),則,
由題意設(shè)圓的方程為: ,
由且知: ,
∴是等腰直角三角形且,
∴ , ,則,
∴ 圓的方程為: .
(Ⅱ)由題意知直線的斜率存在,設(shè)直線的方程為: ,
圓心到直線的距離為: ,
∴.
由得: ,
設(shè),由拋物線定義有: ,
∴,
設(shè),則: 且,
∴ 當(dāng)即時(shí), 的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x(1﹣x).
(1)在如圖所給直角坐標(biāo)系中畫出函數(shù)f(x)的草圖,并直接寫出函數(shù)f(x)的零點(diǎn);
(2)求出函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017西安鐵一中五模】已知函數(shù),其中常數(shù).
(Ⅰ)討論在上的單調(diào)性;
(Ⅱ)當(dāng)時(shí),若曲線上總存在相異兩點(diǎn),使曲線在兩點(diǎn)處的切線互相平行,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓為參數(shù)和直線 其中為參數(shù), 為直線的傾斜角.
(1)當(dāng)時(shí),求圓上的點(diǎn)到直線的距離的最小值;
(2)當(dāng)直線與圓有公共點(diǎn)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,棱長為1 ,點(diǎn)為線段上的動(dòng)點(diǎn)(包含線段端點(diǎn)),則下列結(jié)論正確的______.
①當(dāng)時(shí), 平面;
②當(dāng)時(shí), 平面;
③的最大值為;
④的最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga( +x)(其中a>1).
(1)判斷函數(shù)y=f(x)的奇偶性,并說明理由;
(2)判斷 (其中m,n∈R,且m+n≠0)的正負(fù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對(duì)任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 =1表示雙曲線,命題q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com