【題目】假定小麥基本苗數(shù)x與成熟期有效穗y之間存在相關(guān)關(guān)系,今測(cè)得5組數(shù)據(jù)如下:
x | 15.0 | 25.58 | 30.0 | 36.6 | 44.4 |
y | 39.4 | 42.9 | 42.9 | 43.1 | 49.2 |
(1)以x為解釋變量,y為預(yù)報(bào)變量,作出散點(diǎn)圖;
(2)求y與x之間的線性回歸方程,對(duì)于基本苗數(shù)56.7預(yù)報(bào)其有效穗;
(3)計(jì)算各組殘差,并計(jì)算殘差平方和;
(4)求R2,并說明殘差變量對(duì)有效穗的影響占百分之幾.
【答案】(1)見解析 (2)=0.29x+34.708,估計(jì)成熟期有效穗51.151. (3) =0.342, =0.773 8, =-0.508, =-2.222, =1.616. =8.521 30.(4) R2=0.830,殘差變量貢獻(xiàn)了約1-83%=17%.
【解析】試題分析:(1)建立坐標(biāo)系根據(jù)各組值點(diǎn)出每個(gè)點(diǎn)即可(2)由圖看出,樣本點(diǎn)呈條狀分布,有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系,根據(jù)表中數(shù)據(jù),計(jì)算, 與寫出線性回歸方程,代入x=56.7時(shí)即得解(3)由于y=bx+a+e,可以算得=yi-分別為=0.342, =0.773 8, =-0.508, =-2.222, =1.616.進(jìn)行求和即得總殘差平方和(4)計(jì)算總偏差平方和,回歸平方和=總偏差平方和-殘差平方和,代入公式得R2,解釋變量小麥基本苗數(shù)對(duì)總效應(yīng)貢獻(xiàn)即得,殘差變量貢獻(xiàn)即得.
試題解析:
(1)如下圖所示:
(2)由圖看出,樣本點(diǎn)呈條狀分布,有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系.設(shè)回歸方程為=x+,=30.316,=43.5,=5 090.256 4,
=1 318.746, 2=1 892.25, 2=919.059 9,
iyi=6 737.322.
則=≈0.29.=-≈34.708.
故所求的線性回歸方程為=0.29x+34.708.
當(dāng)x=56.7時(shí),=0.29×56.7+34.708=51.151,估計(jì)成熟期有效穗51.151.
(3)由于y=bx+a+e,可以算得i=yi-i分別為=0.342, =0.773 8, =-0.508, =-2.222, =1.616.
殘差平方和:=8.521 30.
(4)總偏差平方和: (yi-)2=50.18,
回歸平方和:50.18-8.521 30=41.658 7,
R2=0.830.
∴解釋變量小麥基本苗數(shù)對(duì)總效應(yīng)貢獻(xiàn)了約83%.
殘差變量貢獻(xiàn)了約1-83%=17%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),.若函數(shù)的最小值是,求的值;
(3)若函數(shù),的定義域都是,對(duì)于函數(shù)的圖象上的任意一點(diǎn),在函數(shù)的圖象上都存在一點(diǎn),使得,其中是自然對(duì)數(shù)的底數(shù),為坐標(biāo)原點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù), ),直線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)為曲線上任意一點(diǎn), 為直線任意一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2 100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為________________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)文化知識(shí)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加正式比賽,從所抽取的兩組數(shù)據(jù)求出甲、乙兩位同學(xué)的平均值和方差,據(jù)此你認(rèn)為選派哪位同學(xué)參加比賽較為合適?
(Ⅲ)若對(duì)加同學(xué)的正式比賽成績(jī)進(jìn)行預(yù)測(cè),求比賽成績(jī)高于80分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中, , 為線段上一點(diǎn), 為的中點(diǎn).
(1)證明: 平面;
(2)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)p:末位數(shù)字為9的整數(shù)能被3整除;
(2)p:有的素?cái)?shù)是偶數(shù);
(3)p:至少有一個(gè)實(shí)數(shù)x,使x2+1=0;
(4)p:x,y∈R,x2+y2+2x-4y+5=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為C的圓:(x﹣a)2+(y﹣b)2=8(a,b為正整數(shù))過點(diǎn)A(0,1),且與直線y﹣3﹣2 =0相切.
(1)求圓C的方程;
(2)若過點(diǎn)M(4,﹣1)的直線l與圓C相交于E,F(xiàn)兩點(diǎn),且 =0.求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com