【題目】劃船運動員8人,其中3人只會劃右舷,2人只會劃左舷,3人左右舷都會劃,現(xiàn)在要從這8人中選6個人,3個劃右舷,3個劃左舷,共有多少種選法?

【答案】55

【解析】

以劃右舷的人進行分類:(1)只會劃右舷的3人去劃右舷;(2)從只會劃右舷的人中選2人去劃右舷;(3)從只會劃右舷的人中選1人劃右舷.確定劃右舷的人之后,再選劃左舷的人,根據(jù)分類加法和分步乘法計數(shù)原理,可得答案.

如圖

1)若只會劃右舷的3人去劃右舷,則劃左舷的人可有種;

2)若從只會劃右舷的人中選2人去劃右舷,則另一位劃右舷的人有種選擇,其余4人選3人劃左舷,有種;

3)若從只會劃右舷的人中選1人劃右舷,則需從左、右都會劃的人中選2人劃右舷,則另3人去劃左舷,有.

因此,共有種選法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,底面△是邊長為2的正三角形,,底面,點分別為,的中點.

1)求證:平面平面;

2)在線段上是否存在點,使得三棱錐體積為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1是某縣參加2007年高考的學生身高條形統(tǒng)計圖,從左到右的各條形圖表示學生人數(shù)依次記為A1、A2…A10(如A2表示身高(單位:cm)在[150,155內(nèi)的人數(shù)].圖2是統(tǒng)計圖1中身高在一定范圍內(nèi)學生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在160~180cm(含160cm,不含180cm)的學生人數(shù),那么在流程圖中的判斷框內(nèi)應填寫的條件是

A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,過點且不過點的直線與橢圓交于兩點,直線與直線交于點

(Ⅰ)若垂直于軸,求直線的斜率;

(Ⅱ)試判斷直線與直線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),)的周期為,圖像的一個對稱中心為,將函數(shù)圖像上的所有點的橫坐標伸長為原來的2倍(縱坐標不變),在將所得圖像向右平移個單位長度后得到函數(shù)的圖像.

1)求函數(shù)的解析式;

2)是否存在,使得,按照某種順序成等差數(shù)列?若存在,請確定的個數(shù);若不存在,說明理由.

3)求實數(shù)a與正整數(shù)n,使得內(nèi)恰有2013個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若有平面,,,,則下列命題中真命題的序號有________.1)過點且垂直于的直線平行于;(2)過點且垂直于的平面垂直于;(3)過點且垂直于的直線在內(nèi);(4)過點且垂直于的直線在內(nèi).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體m是給定的正整數(shù),且),再從每個子總體中各隨機抽取2個元素組成樣本,用表示元素ij同時出現(xiàn)在樣本中的概率,則_________;所有的和等于________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市隨機選取位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計表,其中“√”表示購買,“×”表示未購買.

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估計顧客同時購買乙和丙的概率;

Ⅱ)估計顧客在甲、乙、丙、丁中同時購買中商品的概率;

Ⅲ)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中那種商品的可能性最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式2lnxax2+2a2x+1恒成立,則a的最小整數(shù)值是(

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案