【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
【答案】(1)證明見解析 (2) 到平面的距離為
【解析】試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離
試題解析:(I)設(shè)BD交AC于點(diǎn)O,連結(jié)EO。
因?yàn)?/span>ABCD為矩形,所以O為BD的中點(diǎn)。
又E為PD的中點(diǎn),所以EO∥PB
又EO平面AEC,PB平面AEC
所以PB∥平面AEC。
(II)
由,可得.
作交于。
由題設(shè)易知,所以
故,
又所以到平面的距離為
法2:等體積法
由,可得.
由題設(shè)易知,得BC
假設(shè)到平面的距離為d,
又因?yàn)?/span>PB=
所以
又因?yàn)?/span>(或),
,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,且過點(diǎn).直線與橢圓相交于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設(shè)直線, 分別與軸交于點(diǎn), .判斷, 大小關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn).
(1)求線段的長度;
(2) 為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為,動(dòng)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以為直徑且被直線截得的弦長為2的圓的方程;
(Ⅲ)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),證明:線段的長為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為( )
A.f(x)=2sin(x+ )
B.f(x)=2sin(2x+ )
C.f(x)=2sin(2x﹣ )
D.f(x)=2sin(4x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過, ,且圓心在直線上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線垂直且與圓相切的直線方程.
(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測情況,圖中一、二、三、四級(jí)是空氣質(zhì)量等級(jí), 一級(jí)空氣質(zhì)量最好,一級(jí)和二級(jí)都是質(zhì)量合格天氣,下面四種說法正確的是( )
①1月至8月空氣合格天數(shù)超過20天的月份有5個(gè)
②第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了
③8月是空氣質(zhì)量最好的一個(gè)月
④6月份的空氣質(zhì)量最差
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com