【題目】已知圓, ,且圓心在直線上.

Ⅰ)求此圓的方程

Ⅱ)求與直線垂直且與圓相切的直線方程

若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.

【答案】;( ;(

【解析】試題分析:

Ⅰ)圓過兩點(diǎn),則圓心必在線段的垂直平分線上,可先求出線段的垂直平分線的方程,再與已知直線方程聯(lián)立方程組解得圓心坐標(biāo),然后求出半徑可得標(biāo)準(zhǔn)方程;

Ⅱ)與題直線垂直,可設(shè)方程為,再由圓心到切線距離等于半徑求得參數(shù)即可;

面積的最大值即點(diǎn)到直線距離最大時(shí)取得,求出圓心到直線的距離,最大距離為,最小距離為為,從而可得最大面積.

試題解析:

Ⅰ)易知中點(diǎn)為, ,

的垂直平分線方程為,

聯(lián)立,解得

,

∴圓的方程為

Ⅱ)易知該直線斜率為

不妨設(shè)該直線方程為,

由題意有,解得

∴該直線方程為

,即

圓心的距離

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,過任作一條與兩條坐標(biāo)軸都不垂直的直線,與橢圓交于兩點(diǎn),且的周長(zhǎng)為8,當(dāng)直線的斜率為時(shí), 軸垂直.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在定點(diǎn),總能使平分?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A(x1,y1),B(x2y2)是過F的直線與拋物線的兩個(gè)交點(diǎn),求證:

(1)y1y2=-p2;(2)為定值;

(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓

(1)若直線與圓相交于兩個(gè)不同點(diǎn),求的最小值;

(2)直線上是否存在點(diǎn),滿足經(jīng)過點(diǎn)有無數(shù)對(duì)互相垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長(zhǎng)等于直線被圓所截得的弦長(zhǎng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長(zhǎng)A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 在同一平面內(nèi),且
(1)若 ,且 ,求m的值;
(2)若| |=3,且 ,求向量 的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案