【題目】長方體中,O是坐標(biāo)原點(diǎn),OA軸,OC軸,軸.EAB中點(diǎn),F中點(diǎn),OA=3,OC=4,=3,則F坐標(biāo)為(

A. (3,2, B. (3,3,

C. (3,,2) D. (3,0,3)

【答案】B

【解析】

分析:在長方體中,由OA=3,OC=4,=3可得點(diǎn)A坐標(biāo)為(3,0,0),點(diǎn)B坐標(biāo)為(3,4,0),點(diǎn)的坐標(biāo)為(3,4,3)。進(jìn)而可由中點(diǎn)坐標(biāo)公式先后可求得點(diǎn)E的坐標(biāo)為(3,2,0),點(diǎn)F坐標(biāo)為(3,3,)。

詳解因?yàn)?/span>OA=3,OC=4,所以點(diǎn)A坐標(biāo)為(3,0,0),點(diǎn)B坐標(biāo)為(3,4,0)。

因?yàn)?/span>EAB中點(diǎn),所以點(diǎn)E的坐標(biāo)為(3,2,0)。

因?yàn)?/span>=3,所以點(diǎn)的坐標(biāo)為(3,4,3)。

因?yàn)?/span>F中點(diǎn),所以點(diǎn)F坐標(biāo)為(3,3,)。

故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個涉及幾何體體積問題,意思是兩個等高的幾何體,如在同高處的截面積恒相等,則體積相等,設(shè)A,B為兩個等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中點(diǎn).

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角ABC中,內(nèi)角所對應(yīng)的邊分別為,且滿足:,,則的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為 ,且點(diǎn) 在橢圓 上.
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)過橢圓 上異于其頂點(diǎn)的任意一點(diǎn) 作圓 的兩條切線,切點(diǎn)分別為 不在坐標(biāo)軸上),若直線 軸, 軸上的截距分別為 ,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn) ,離心率為 ,左、右焦點(diǎn)分別為
(1)求橢圓的方程;
(2)若直線 與橢圓交于A,B兩點(diǎn),與以 為直徑的圓交于C,D兩點(diǎn),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}(nN*)滿足:a1=1,an1-sin2θ·an=cos 2θ·cos2nθ,其中θ.

(1)當(dāng)θ時,求數(shù)列{an}的通項(xiàng)公式;

(2)(1)的條件下,若數(shù)列{bn}滿足bn=sin+cos (nN*,n≥2),且b1=1,求證:對任意的nN*,1≤bn恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列滿足,,且..

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)的;

(3)將數(shù)列的項(xiàng)相間排列構(gòu)成新數(shù)列,設(shè)新數(shù)列的前項(xiàng)和為,若對任意正整數(shù)n都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{ 滿足 , .
(1)求證:數(shù)列 是等比數(shù)列;
(2)若數(shù)列 是單調(diào)遞增數(shù)列,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案