【題目】已知數(shù)列{an}(nN*)滿足:a1=1,an1-sin2θ·an=cos 2θ·cos2nθ,其中θ.

(1)當(dāng)θ時(shí),求數(shù)列{an}的通項(xiàng)公式;

(2)(1)的條件下,若數(shù)列{bn}滿足bn=sin+cos (nN*,n≥2),且b1=1,求證:對(duì)任意的nN*,1≤bn恒成立.

【答案】(1)(2)見解析

【解析】分析:(1)θ代入可得an1an=0,即,從而可得{an}的通項(xiàng)公式;

(2)由(1)an,所以當(dāng)nN*,n≥2時(shí),,從而即可證明.

詳解:(1)當(dāng)θ時(shí),sin2θ,cos 2θ=0,所以an1an=0,即.所以數(shù)列{an}是首項(xiàng)為1,公比為的等比數(shù)列,即數(shù)列{an}的通項(xiàng)公式為an (nN*).

(2)證明:由(1)an,所以當(dāng)nN*,n≥2時(shí),

bn=sin+cos=sin+cos·=sin+cossin,

易知b1=1也滿足上式,

所以bnsin (nN*).

因?yàn)?/span>nN*,所以0<,<,

所以1≤sin,即對(duì)任意的nN*,1≤bn恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為x萬(wàn)元時(shí),銷售量t萬(wàn)件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬(wàn)件還需投入成本(10+2t)萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為5+ 萬(wàn)元/萬(wàn)件.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,則“ ”是“ ”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體中,O是坐標(biāo)原點(diǎn),OA軸,OC軸,軸.EAB中點(diǎn),F中點(diǎn),OA=3,OC=4,=3,則F坐標(biāo)為(

A. (3,2, B. (3,3,

C. (3,,2) D. (3,0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列 滿足:,,;數(shù)列 滿足:

(1)求數(shù)列 的通項(xiàng)公式;

(2)證明:數(shù)列 中的任意三項(xiàng)不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的角AB,C所對(duì)的邊分別為a,b,c,設(shè)向量=(ab),=(sin B,sin A), =(b-2,a-2).

(1),求證:ABC為等腰三角形;

(2),邊長(zhǎng)c=2,∠C,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BAB=8,點(diǎn)DBC邊上,且CD=2,cos∠ADC.

(1)sin ∠BAD

(2)BD,AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , , .
(1)若 的充分不必要條件,求實(shí)數(shù) 的取值范圍;
(2)若 ,“ ”為真命題,“ ”為假命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)完全充滿電量,在開機(jī)不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時(shí)間稱為手機(jī)的待機(jī)時(shí)間。

為了解A,B兩個(gè)不同型號(hào)手機(jī)的待機(jī)時(shí)間,現(xiàn)從某賣場(chǎng)庫(kù)存手機(jī)中隨機(jī)抽取A,B兩個(gè)型號(hào)的手機(jī)各5臺(tái),在相同條件下進(jìn)行測(cè)試,統(tǒng)計(jì)結(jié)果如下:

手機(jī)編號(hào)

1

2

3

4

5

A型待機(jī)時(shí)間(h)

120

125

122

124

124

B型待機(jī)時(shí)間(h)

118

123

127

120

a

已知A,B兩個(gè)型號(hào)被測(cè)試手機(jī)待機(jī)時(shí)間的平均值相等。

(Ⅰ)求a的值;

(Ⅱ)求A型號(hào)被測(cè)試手機(jī)待機(jī)時(shí)間方差和標(biāo)準(zhǔn)差的大;

(Ⅲ)從被測(cè)試的手機(jī)中隨機(jī)抽取A,B型號(hào)手機(jī)各1臺(tái),求至少有1臺(tái)的待機(jī)時(shí)間超過122小時(shí)的概率。

(注:n個(gè)數(shù)據(jù)的方差,其中為數(shù)據(jù)的平均數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案