【題目】已知圓,圓過點且與圓相切,設(shè)圓心的軌跡為曲線.
(1)求曲線的方程;
(2)點,為曲線上的兩點(不與點重合),記直線的斜率分別為,若,請判斷直線是否過定點. 若過定點,求該定點坐標(biāo),若不過定點,請說明理由.
【答案】(1) (2)見解析
【解析】
(1)結(jié)合題意發(fā)現(xiàn)圓心C的軌跡是以D,B為焦點的橢圓,建立方程,即可。(2)設(shè)出直線PQ的方程,建立方程,將直線方程代入橢圓方程,結(jié)合根與系數(shù)關(guān)系,得到m,k的關(guān)系式,計算定點,即可。
(1)設(shè)圓C的半徑為r,依題意,|CB|=r,|CD|=4-r,
進而有|CB|+|CD|=4,所以圓心C的軌跡是以D,B為焦點的橢圓,
所以圓心C的軌跡方程為.
(2)設(shè)點的坐標(biāo)分別為,
設(shè)直線的方程為(直線的斜率存在),
可得,
整理為:,
聯(lián)立,消去得:,
由 ,有,
有,,
,可得,
故有:
整理得:,解得:或
當(dāng)時直線的方程為,即,過定點不合題意,
當(dāng)時直線的方程為,即,過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線x2=8y的焦點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線x=﹣2與橢圓交于P,Q兩點,A,B是橢圓上位于直線x=﹣2兩側(cè)的動點,若直線AB的斜率為,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點為,為圓與橢圓的一個公共點,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,過作直線與橢圓交于,兩點,點為點關(guān)于軸的對稱點.
(1)求證:;
(2)試問過,的直線是否過定點?若是,請求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),則下列命題中正確的個數(shù)是( )
①當(dāng)時,函數(shù)在上有最小值;②當(dāng)時,函數(shù)在是單調(diào)增函數(shù);③若,則;④方程可能有三個實數(shù)根.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集(,)具有性質(zhì):對任意、(),與兩數(shù)中至少有一個屬于集合,現(xiàn)給出以下四個命題:①數(shù)集具有性質(zhì);②數(shù)集具有性質(zhì);③若數(shù)集具有性質(zhì),則;④若數(shù)集()具有性質(zhì),則;其中真命題有________(填寫序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是( )
A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市上年度電價為0.80元/千瓦時,年用電量為千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.7元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時),經(jīng)測算,下調(diào)電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數(shù)為.試問當(dāng)?shù)仉妰r最低為多少元/千瓦時,可保證電力部門的收益比上年度至少增加20%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”.下列有關(guān)說法中正確的個數(shù)是( )個
①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)是圓的一個太極函數(shù);
③存在圓,使得是圓的太極函數(shù);
④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù).
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com