精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四邊形ABCD中,AD∥BC,ADAB,∠BCD45°,∠BAD90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構成四面體ABCD,則在四面體ABCD中,下列結論正確的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

【答案】D

【解析】∵在四邊形ABCD中,ADBC,ADAB,∠BCD=45°,∠BAD=90°,∴BDCD.又平面ABD⊥平面BCD,且平面ABD∩平面BCDBD,∴CD⊥平面ABD,則CDAB.又ADABADCDD,∴AB⊥平面ADC,又AB平面ABC,∴平面ABC⊥平面ADC,故選D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在空間幾何體ABCDFE中,底面是邊長為2的正方形,,,.

(1)求證:AC//平面DEF;

(2)已知,若在平面上存在點,使得平面,試確定點的位置.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4—5:不等式選講

已知函數

1)當時,解不等式;

2)若存在實數,使得不等式成立,求實的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,圓過點且與圓相切,設圓心的軌跡為曲線

(1)求曲線的方程;

(2)點,為曲線上的兩點(不與點重合),記直線的斜率分別為,若,請判斷直線是否過定點. 若過定點,求該定點坐標,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數,若,則稱的“不動點”;若,則稱的“穩(wěn)定點”.函數的“不動點”和“穩(wěn)定點”的集合分別記為,即,

)設函數,求集合

)求證:

)設函數,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體中,四邊形為直角梯形, ,四邊形為矩形,且, , 的中點.

(1)求證: 平面;

(2)若,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數).

1)函數是否過定點?若是求出該定點,若不是,說明理由.

2)將函數的圖象向下平移個單位,再向左平移個單位后得到函數,設函數的反函數為,求的解析式;

3)在(2)的基礎上,若函數過點,且設函數的定義域為,若在其定義域內,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案