【題目】如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是( )
A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間幾何體ABCDFE中,底面是邊長為2的正方形,,,.
(1)求證:AC//平面DEF;
(2)已知,若在平面上存在點(diǎn),使得平面,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5:不等式選講
已知函數(shù).
(1)當(dāng)時,解不等式;
(2)若存在實數(shù),使得不等式成立,求實的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓過點(diǎn)且與圓相切,設(shè)圓心的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn),為曲線上的兩點(diǎn)(不與點(diǎn)重合),記直線的斜率分別為,若,請判斷直線是否過定點(diǎn). 若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點(diǎn)”;若,則稱為的“穩(wěn)定點(diǎn)”.函數(shù)的“不動點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,O為AC與BD的交點(diǎn),E為AD的中點(diǎn),A1E⊥平面ABCD.
(1)證明:A1O∥平面B1CD1;
(2)設(shè)M是OD的中點(diǎn),證明:平面A1EM⊥平面B1CD1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,四邊形為直角梯形, ,四邊形為矩形,且, , 為的中點(diǎn).
(1)求證: 平面;
(2)若,求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)函數(shù)是否過定點(diǎn)?若是求出該定點(diǎn),若不是,說明理由.
(2)將函數(shù)的圖象向下平移個單位,再向左平移個單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)在(2)的基礎(chǔ)上,若函數(shù)過點(diǎn),且設(shè)函數(shù)的定義域為,若在其定義域內(nèi),不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com