已知數(shù)列{an}滿足an+1-an=2,a1=2,等比數(shù)列{bn}滿足b1=a1,b4=a8
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{cn}滿足cn=
1
Sn
,求數(shù)列{cn}的前項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由等差數(shù)列、等比數(shù)列的定義即可求得通項(xiàng)公式;
(2)利用裂項(xiàng)相消法求的數(shù)列的和即可.
解答: 解:( I)an+1-an=2,a1=2,
所以數(shù)列{an}為等差數(shù)列,
則an=2+(n-1)2=2n;
b1=a1=2,b4=a8=16,
所以q3=
b4
b1
=8,q=2
,
bn=2n;
(2)由(1)得sn=
n(2+2n)
2
=n(n+1),
∴cn=
1
Sn
=
1
n(n+1)
=
1
n
-
1
n+1

∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
點(diǎn)評(píng):本題主要考查等差數(shù)列、等比數(shù)列的定義及性質(zhì),等差數(shù)列求和公式及裂項(xiàng)相消法求數(shù)列和知識(shí),考查學(xué)生的運(yùn)算求解能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a2=
2
3
,且
1
an-2
+
1
an
=
2
an-1
(n≥3,n∈N*),則a4=(  )
A、
1
2
B、
2
5
C、
5
2
D、-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一:對(duì)于一個(gè)函數(shù)f(x)(x∈D),若存在兩條距離為d的直線y=kx+m1和y=kx+m2,使得在x∈D時(shí),kx+m1≤f(x)≤kx+m2 恒成立,則稱函數(shù)f(x)在D內(nèi)有一個(gè)寬度為d的通道.
定義二:若一個(gè)函數(shù)f(x),對(duì)于任意給定的正數(shù)?,都存在一個(gè)實(shí)數(shù)x0,使得函數(shù)f(x)在[x0,+∞)內(nèi)有一個(gè)寬度為?的通道,則稱f(x)在正無窮處有永恒通道.
下列函數(shù):
①f(x)=lnx,
②f(x)=
sinx
x
,
③f(x)=
x2-1

④f(x)=e-x,
其中在正無窮處有永恒通道的函數(shù)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,S(1,1)是拋物線為y2=2px(p>0)上的一點(diǎn),以S為圓心,r為半徑(1<r<
2
)做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn).
(Ⅰ)求證:直線CD的斜率為定值;
(Ⅱ)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC:ED=1:3,求sin2∠CSD+cos∠CSD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(Ⅰ)若(a,b)是f(x)的一個(gè)“P數(shù)對(duì)”,且f(2)=6,f(4)=9,求常數(shù)a,b的值;
(Ⅱ)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(Ⅲ)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求k的值及f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx.
(Ⅰ)若函數(shù)h(x)=f(x)+
1
2
x2-ax在點(diǎn)(1,h(1))處的切線與直線4x-y+1=0平行,求實(shí)數(shù)a的值
(Ⅱ)對(duì)任意的a∈[-1,0),若不等式f(x)<
1
2
ax2+2x+b在x∈(0,1]上恒成立,求實(shí)數(shù)b的取值范圍
(Ⅲ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線y=x對(duì)稱,設(shè)A(a,g(a)),B(b,g(b)),N=(
a+b
2
,g(
a+b
2
))(a<b),試根據(jù)如圖所示的曲邊梯形ABCD的面積與兩個(gè)直角梯形ADMN和NMCB的面積的大小關(guān)系,寫出一個(gè)關(guān)于a和b的不等式,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正四棱錐P-ABCD底面的四個(gè)頂點(diǎn)A,B,C,D在球O的同一個(gè)大圓上,點(diǎn)P在球面上,如果VP-ABCD=
16
3
,則球O的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=a+i,z2=1-i(i為虛數(shù)單位),且z1•z2為純虛數(shù),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于集合A={a1,a2,a3,a4,a5},定義集合S={x|x=ai+aj,1≤i<j≤5},記集合S中的元素個(gè)數(shù)為S(A).若a1,a2,a3,a4,a5是公差大于零的等差數(shù)列,則S(A)=
 

查看答案和解析>>

同步練習(xí)冊答案