【題目】如圖,在四棱錐中,平面平面ABCD,且.四邊形ABCD滿足,,.E為側(cè)棱PB的中點,F為側(cè)棱PC上的任意一點.

(1)FPC的中點,求證:平面PAD;

(2)求證:平面平面PAB;

(3)是否存在點F,使得直線AF與平面PCD垂直?若存在,寫出證明過程并求出線段PF的長;若不存在,請說明理由.

【答案】(1)見解析;(2)見解析;(3)存在,

【解析】

1)易得,利用線面平行的判定證明;
2)易得AD⊥平面PAB,利用面面垂直的判定,可得AD平面AFD,所以平面AFD⊥平面PAB
3)易得CD⊥平面PAC.只需在棱PC上存在點F使得AFPC即可.

(1)因為E,F分別為側(cè)棱PBPC的中點,

所以,因為,

所以,平面PAD,平面PAD,

所以平面PAD;

(2)因為平面平面PAC,平面平面,

,平面PAC

所以平面ABCD,又平面ABCD,所以.

又因為,,所以平面PAB,

平面AFD,所以平面平面PAB;

(3)在棱PC上顯然存在點F使得.

由已知,,,.

由平面幾何知識可得.

(2)知,平面ABCD,所以,

因為,所以平面PAC.

平面PAC,所以.

又因為,所以平面PCD.

中,,,

可求得,.

可見直線與平面PCD能夠垂直,此時線段PF的長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和分別為,對任意,

1)若,求;

2)若對任意,都有

①當(dāng)時,求數(shù)列的前項和;

②是否存在兩個整數(shù),使成等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,點的中點.

(1)證明:;

(2)若點為線段的中點,平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)從某校高一年級隨機抽取名學(xué)生,獲得了他們?nèi)掌骄邥r間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:

組號

分組

頻數(shù)

頻率

Ⅰ)求的值.

Ⅱ)若,補全表中數(shù)據(jù),并繪制頻率分布直方圖.

Ⅲ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計該校高一學(xué)生的日平均睡眠時間不少于小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期屮考試后,分別從兩個班級屮各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

p>成績不優(yōu)良

總計

附: .

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上的最大值是最小值是

A. 有關(guān),且與有關(guān) B. 有關(guān),但與無關(guān)

C. 無關(guān),且與無關(guān) D. 無關(guān),但與有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)在R上存在導(dǎo)數(shù)fx),對任意的xR,有fx+f-x=x2,且x∈(0,+∞)時,fx)<x.若f1-a-fa-a,則實數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個函數(shù)模擬從整治后第一個月開始工廠的污染模式:,,其中表示月數(shù),、、分別表示污染度.

1)問選用哪個函數(shù)模擬比較合理,并說明理由;

2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個月的污染度不超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,直線ly=2上的點和橢圓上的點的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點為A,點BC上的不同于A的兩點,且點B,C關(guān)于原點對稱,直線ABAC分別交直線l于點E,F.記直線的斜率分別為

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案