已知實數(shù)x滿足|x|≥2且x2+ax+b-2=0,則a2+b2的最小值為
 
考點:基本不等式
專題:計算題
分析:將x2+ax+b-2=0變形為xa+b+x2-2=0,即點(a,b)在直線xa+b+x2-2=0上,則a2+b2的表示點(a,b)與(0,0)的距離的平方;(0,0)到直線xa+b+x2-2=0距離的平方為為
(x2-2)2
1+x2
a2+b2
(x2-2)2
1+x2
,|x|≥2
,通過換元,利用基本不等式求出最小值.
解答: 解:由于x2+ax+b-2=0,
則xa+b+x2-2=0,
∴點(a,b)在直線xa+b+x2-2=0上,
則a2+b2的表示點(a,b)與(0,0)的距離的平方;
∴(0,0)到直線xa+b+x2-2=0距離的平方為為
(x2-2)2
1+x2
,
a2+b2
(x2-2)2
1+x2
,|x|≥2

令t=1+x2≥5,
a2+b2
(t-3)2
t
=t+
9
t
-6,t≥5
,
y=t+
9
t
-6
,t≥5,則y=t+
9
t
-6(t≥5)為增函數(shù),
∴當t=5時有最小值5+
9
5
-6=
4
5
;
當且僅當x=±2取等號.
故a2+b2的最小值為
4
5

故答案為:
4
5
點評:本題考查利用幾何解決代數(shù)中最值問題;考查換元的數(shù)學方法及基本不等式求最值,是一道難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|y=ln(x-2)+
3x-3
,x∈R},N={x||x-1|-|4-x|<a,x∈R},若M∩N≠∅,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,x),
b
=(-1,x),若2
a
-
b
b
垂直,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(2,3),B(3,0),且
AC
=-2
CB
,則點C的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y≥1
y≤3
x-y≤1
,若z=kx+y的最大值為5,且k為負整數(shù),則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某一物體在某種介質中作直線運動,已知t時刻,它的速度為v,位移為s,且它在該介質中所受到的阻力F與速度v的平方成正比,比例系數(shù)為k,若已知s=
1
2
t2,則該物體由位移s=0移動到位移s=a時克服阻力所作的功為
 
.(注:變力F做功W=∫
 
s2
s1
F(s)ds,結果用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z1=a+2i,z2=2+i,且
z1
z2
為純虛數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Z1,Z2是復數(shù),下列命題:
①若|Z1-Z2|=0,則
.
Z1
=
.
Z2

②若Z1=
.
Z2
,則
.
Z1
=Z2
③若|Z1|=|Z2|,則Z1
.
Z1
=Z2
.
Z2

④若|Z1|=|Z2|,則Z12=Z22
以上真命題序號
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosx,則f(x)是( 。
A、奇函數(shù)
B、偶函數(shù)
C、非奇非偶函數(shù)
D、既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

同步練習冊答案