15.若向量$\overrightarrow{a}$=(1,1,2),$\overrightarrow$=(2,-1,2),則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.3B.$\frac{5\sqrt{6}}{18}$C.$\frac{2}{55}$D.2

分析 利用公式cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$求解.

解答 解:∵向量$\overrightarrow{a}$=(1,1,2),$\overrightarrow$=(2,-1,2),
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{2-1+4}{\sqrt{6}•\sqrt{9}}$=$\frac{5\sqrt{6}}{18}$.
故選:B.

點(diǎn)評 本題考查空間向量的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量夾角余弦公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如圖,已知分?jǐn)?shù)在100-110的學(xué)生數(shù)有21人.
(1)求總?cè)藬?shù)N和分?jǐn)?shù)在110-115分的人數(shù)n;
(2)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110-115的n名學(xué)生(女生占$\frac{1}{3}$)中任選2人,求其中恰好含有一名女生的概率;
(3)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)生提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進(jìn)行分析,下面是該生7次考試的成績.
數(shù)學(xué)888311792108100112
物理949110896104101106
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.若該生的數(shù)學(xué)成績達(dá)到130分,請你估計(jì)他的物理成績大約是多少?
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)(2$\frac{4}{5}$)0+2-2×(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}}$;
(2)($\frac{25}{16}$)0.5+($\frac{27}{8}$)${\;}^{-\frac{1}{3}}}$-2π0+4${\;}^{{{log}_4}5}}$-lne5+lg200-lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對于實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x],下列命題中正確命題的序號②③⑤.
①函數(shù)f(x)的最大值為1;
②函數(shù)f(x)的最小值為0;
③方程f(x)-$\frac{1}{2}$=0有無數(shù)個(gè)解;
④函數(shù)f(x)是增函數(shù);
⑤對任意的x∈R,函數(shù)f(x)滿足f(x+1)=f(x);
⑥函數(shù)f(x)的圖象與函數(shù)g(x)=|lgx|的圖象的交點(diǎn)個(gè)數(shù)為10個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=ax-2-1(a>0且a≠1)的圖象必經(jīng)過點(diǎn)(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.命題p:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}$(a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:?x∈[0,$\frac{{\sqrt{2}}}{2}$],x2-a≤0恒成立.
(1)求命題q真時(shí)a的取值范圍;
(2)若命題p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.有以下命題:
①如果向量$\overrightarrow a$,$\overrightarrow b$與任何向量不能構(gòu)成空間向量的一組基底,那么$\overrightarrow a$,$\overrightarrow b$的關(guān)系是不共線;
②O,A,B,C為空間四點(diǎn),且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不構(gòu)成空間的一個(gè)基底,則點(diǎn)O,A,B,C一定共面;
③已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是空間的一個(gè)基底,則向量$\overrightarrow a$+$\overrightarrow b$,$\overrightarrow a$-$\overrightarrow b$,$\overrightarrow c$也是空間的一個(gè)基底;
④△ABC中,A>B的充要條件是sinA>sinB.
其中正確的命題個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a1>0,d<0,S4=S8,則Sn>0成立的最大自然數(shù)n為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=($\frac{1}{4}$)x-($\frac{1}{2}$)x-1-a,(a∈R);
(1)若f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍
(2)當(dāng)f(x)有零點(diǎn)時(shí),討論f(x)有零點(diǎn)的個(gè)數(shù),并求出f(x)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案