【題目】貨車(chē)欲以xkm/h的速度行駛,去130km遠(yuǎn)的某地,按交通法規(guī),限制x的允許范圍是50x100,假設(shè)汽油的價(jià)格為2元/升,而汽車(chē)耗油的速率是升/小時(shí).司機(jī)的工資是14元/小時(shí),試問(wèn)最經(jīng)濟(jì)的車(chē)速是多少?這次行車(chē)往返的總費(fèi)用最低是多少?

【答案】最經(jīng)濟(jì)的車(chē)速是57km/h,這次行車(chē)往返的總費(fèi)用最低約為2×82.2=164.4().

【解析】

求出單程行駛:汽車(chē)運(yùn)行的時(shí)間為小時(shí) ,耗油量為升,耗油費(fèi)用為元,司機(jī)的工資為元,推出這次行車(chē)的單程費(fèi)用利用函數(shù)的導(dǎo)數(shù)求解函數(shù)的最值即可

單程行駛:汽車(chē)運(yùn)行的時(shí)間為小時(shí),耗油量為·升,耗油費(fèi)用為2··元,司機(jī)的工資為14×元,

故這次行車(chē)的單程費(fèi)用為

y=2··+14·=130·.

所以y′=130·.

y′=0得,x=1857(km/h),當(dāng)50x<18時(shí),,y單調(diào)遞減;

當(dāng)18x100時(shí),,y單調(diào)遞增,

當(dāng)x=18時(shí),y取得最小值,

即所以y=130×82.2().所以最經(jīng)濟(jì)的車(chē)速是57 km/h,這次行車(chē)往返的總費(fèi)用最低約為2×82.2=164.4().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于集合,,.集合中的元素個(gè)數(shù)記為.規(guī)定:若集合滿(mǎn)足,則稱(chēng)集合具有性質(zhì)

(I)已知集合,,寫(xiě)出的值;

(II)已知集合,為等比數(shù)列,,且公比為,證明:具有性質(zhì);

(III)已知均有性質(zhì),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人承攬一項(xiàng)業(yè)務(wù),需做文字標(biāo)牌4個(gè),繪畫(huà)標(biāo)牌5個(gè),現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個(gè),繪畫(huà)標(biāo)牌2個(gè),乙種規(guī)格每張2m2,可做文字標(biāo)牌2個(gè),繪畫(huà)標(biāo)牌1個(gè),求兩種規(guī)格的原料各用多少?gòu),才能使總的用料面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一樓房高米,某廣告公司在樓頂安裝一塊寬米的廣告牌,為拉桿,廣告牌的傾角為,安裝過(guò)程中,一身高為米的監(jiān)理人員站在樓前觀察該廣傳牌的安裝效果:為保證安全,該監(jiān)理人員不得站在廣告牌的正下方:設(shè)米,該監(jiān)理人員觀察廣告牌的視角.

(1)試將表示為的函數(shù);

(2)求點(diǎn)的位置,使取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為菱形,的中點(diǎn),為等腰直角三角形,,且.

(1)證明:平面.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓,過(guò)點(diǎn)的直線(xiàn)與圓交于兩點(diǎn),線(xiàn)段的中點(diǎn)為不同于),若,則的方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,己知圓,且圓被直線(xiàn)截得的弦長(zhǎng)為2.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若圓的切線(xiàn)軸和軸上的截距相等,求切線(xiàn)的方程;

(3)若圓上存在點(diǎn),由點(diǎn)向圓引一條切線(xiàn),切點(diǎn)為,且滿(mǎn)足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線(xiàn)C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線(xiàn)l的參數(shù)方程為(為參數(shù)),直線(xiàn)l與曲線(xiàn)C交于MN兩點(diǎn)。

(1)寫(xiě)出直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案