在直角坐標系中,曲線C1的參數(shù)方程為:為參數(shù)),以原點為極點,x軸的正半軸為極軸,并取與直角坐標系相同的長度單位,建立極坐標系,曲線C2是極坐標方程為:
(1)求曲線C2的直角坐標方程;
(2)若P,Q分別是曲線C1和C2上的任意一點,求的最小值.

(1);(2)

解析
試題分析:(1)把代入曲線C2是極坐標方程中,即可得到曲線C2的直角坐標方程;
(2)由已知可知P),,由兩點間的距離公式求出的表達式,再根據(jù)二次函數(shù)的性質(zhì),求出的最小值,然后可得min-.
試題解析:(1)
. 4分
(2)設P),
       6分
時,,       8分
.        10分
考點:1.極坐標方程和直角坐標方程的互化;2.曲線與曲線間的位置關(guān)系以及二次函數(shù)的性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(2013•浙江)已知a∈R,函數(shù)f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x∈[0,2]時,求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義:若上為增函數(shù),則稱為“k次比增函數(shù)”,其中. 已知其中e為自然對數(shù)的底數(shù).
(1)若是“1次比增函數(shù)”,求實數(shù)a的取值范圍;
(2)當時,求函數(shù)上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,求證:函數(shù)上的奇函數(shù);
(2)若函數(shù)在區(qū)間上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,不等式的解集為.
(1)求的值;
(2)若對一切實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題表示的曲線是雙曲線;命題函數(shù)在區(qū)間上為增函數(shù),若“”為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為.
(1)求函數(shù)上的最小值;
(2)對,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求下列函數(shù)f(x)的解析式.
(1) 已知f(1-x)=2x2-x+1,求f(x);
(2) 已知f=x2,求f(x);
(3) 已知一次函數(shù)f(x)滿足f(f(x))=4x-1,求f(x);
(4) 定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

證明函數(shù)f(x)=在區(qū)間[1,+∞)上是減函數(shù).

查看答案和解析>>

同步練習冊答案